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Secondary School Mathematics Curriculum Improvement Study

Course II -~ Teacher Commentary

HOW TO USE THIS COMMENTARY

1. Purposes. At the start of the commentary for each chapter,
the overall purposes and goals for the chapter are stated.
Often, specific sections within the chapter are identified
here as they would relate to each purpose stated. 3Similarly,
the commentary for every section within the chapter will

begin with a statement of specific purposes.

2. Sections. There are two basic types of sections within
each chapter. One type presents concepts; the second
type consists of exercises. The sections have been ordered
so that a section (or sometimes two ssctions) of exposition
is followed by a section of related exercises. Within
various sections, the teacher will find: possible moti-
vational devices; a variety of approaches; notations rela-
tive to difficult exercises; suggestions for placement of
exercises as class work, homework or self-study; hints
regarding difficulties that may occur; new vocabulary

underscored, and some abstract background for the teacher.

3. Time Estimates. In terms of days, a time estimate will

be found at the beginning of each chapter commentary.

This 1s the estimate for the chapter; it is.based upon.

4
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individual time estimates for sections within the chapter.

Time estimates are given only to those sections containing
some form of exposition. It is assumed that each exercise
section is to be grouped with the concept section immedi-
ately preceding it relative to time estimations.

The teacher should note that Chapter 11 is not to be
included as part of Course II. Also, the teacher should
feel free to assign Appendix A as a self-study unit, and
pace his teaching so that emphasis is placed on the chap-

ters 1 to 10,

L, Bxercises. Certain exercises have proved to be more suc-
cessful when discussed within the actual lesson rather
than assigned as homework. Suggestions regarding the
placement of exercises appear at various points within
the commentary.

The teacher need not heold rigidly to the exercises as
listed. He 1is free to choose, add or alter any exercises
whatsoever. In instances stressing drill, the teacher may
wish to select or limit exercises depending upon the par-
ticular skills of his class and/or individual students.

Difficult problems have been starred and may be considered

as optional., However, these problems are the most rewar-
ding as well as the most challenging, and the teacher should
discuss some of these in the classroom and/or assign them
to the better students as homework. In all instances,

the teacher should study the exercises before assigning

g
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them, carefully noting the concepts involved and approxi-
meting the time required for those exercises chosen. To
insure that the teachers’ evaluation of time for an &ssizgn-
ment is as accurate as posslible, the teachers should occa-
slonally ask students to time homework assignments, allowing
ﬁim' to .compare the true mean time with his Jjudgement.

Proofs. The proofs presented in the commentary and the-

text are not to be accepted as the only possible, logical

proo.f; - The teacher should expouse the students to other
approaches, and encourage the students to develop -thelr
owr. proofs. 4Student approaches, very often, are mbre
direct, less involved, yet complete mathematical solutions

to problems.

Self-Study Units. At various points within a chapter,
certain sections will be identified as “self-.study" ones.
(Theée are feﬁer in nﬁmber in comparison to Course I.)

In essence, these sectilons usually contein simple appli-
cations of concepts previously taught and such sections
sh;auld pe regarded as being within the scope of each stu-
dent's abllity.

Summary and Review Exercises. At the end of each chapter,
the teacher will find a summary of the main concepts stu-
died, followed.by & series of related review exercilses.

The teacher may wish to assign the reading of the summary

and the completion of the review exercise as:

N
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(2) homework to be reviewed in class the following day,

(b) self-study with time allowed the following day for
student questions,

(c) classwork or

(d) test items.

Tests. At the end of each chapter commentary, the teacher
will find a series of suggested test items. The teacher
should again feel free to choose, add, or alter any of
these problems in constructing a test for his own class.
An additional source of test items, when altered, would
be the review exercises appearing at the end of each chape

ter in the text.

Unified Approach. The teacher should be alert to related

topics and concepts throughout the entire course. The
students should be able to grasp key ideas that weave a
continual thread throughout the main body of the text of
Course II. (Many of these concepts were previously deve-
loped in Course I.) Properties and relations must contin-
ually be placed in the foreground and mathematics should
be viewed as a united subject rather than a series of dis-

Joint branches of learning.

Lo}
K4
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Teachers Commentary of Unified Modern Mathematics Course II

i1s an expansion of the original commentary written by the au-~
thors of the text. It was revised by the following pilot tea-
chers in the SSMCIS Project:

Franklin B. Armour, Teaneck, New Jersey

Samuel Backer, Elmont, New York

Douglas R. Bumby, New York, New York

Annabelle Cohen, Teaneck, New Jersey

John Gregory, Westport, Connecticut

Alexander Imre, Elmont, New York

Edward Keenan, Elmont, New York:

Christine McGoey, Leonia, New Jersey

Mary Murray, Elmont, New York

Mary P. Renda, Teaneck, New Jersey

Vliadimir P. Rodionoff, Sao Paulo, Brazil

David Swaim, Leonia, New Jersey

It is hoped that the teaching experience of this team will
be reflected In a practical 1list of suggestions and a reason-
able estimation of time allotments for the whole of this com-

mentary.




Time Estimation - Course II

Chapters Teaching Days Test Total
Chapter 1 13 days 1 14
Chapter 2 16 - 17 days 1 17
Chapter 3 18 - 21 days 1 19
Chapter 4 15 days 1 16
Chapter 5 14 days 1 15
Chapter 6 19 - 23 days 1 20 .
Chapter 7 14 davs 1 15
Chapter 8 14 days 1 15
Chapter 9 25 - 28 days 1 26
Chapter 10 11 days 1 12

Appendix A - Independent Study - no time estimate

@
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ERRATA FOR COURSE 1II

PART I
Chapter 2
Page 109 Line 21 a = 3
instead of a = 0
Chapter 3
Page Line Change
216 last line of should read:
first paragraph "that x = ; impiies
that 7x + 10 = 15."
223 section 8(a) should read:
"3x3 - 14x + 8 = O"
Chapter §
Page ' | Line Change
227 ' 5 expension —> extension
8 and x.a = b may have no
whole number solutions.
16 x® + 6x + 8 = 0 has as the
228 3 than —> that
20 5 —> 57
2k2 line 5 - e aes
' from botton:

245 (an inclusion)

10
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At this point in the discussion of real numbers, the teacher
should introduce the following procedure in order that the student
will be able to find a rational number of the form % a, b €2

b # O when he is given a repeating decimal form.

Example 1. Let®@ N = .33

Subs. :I., from ‘& 9N = 3.00
N = 8‘
1
N = 3

Example 2. Let{l' N = .121%7

Mult., T X 1007, 100N = 12,12
Subt. 3" from@. 99N = 12
- 12 4
N=g5 °r 33

Example 3. Let A N = 1.23133T
Malt. @ X 1000 3 1000 N = 1231,23T

Subt. @) from@ 999N = 1230

N = 1230 . 410

Example 4. Letl> N = 1.722
Multi. 3 X 103 10N = 17.22
Multi. 3 X 1003 100N = 172.23

‘a

Subt. & from 3 90N = 155,

N= PR or g




-9 -

Tage Line Change
page 249 Problem T(f) .333°° " —mm=> ,333...
Example 1, LTLB39U6" " —> .T183946. .,

.T7184623° ' ——> ,7184623...

page 252 line 5 from X = .a,8,858," " "—> .2a,33853,...
bottom
y = cb:bzbab‘...—> .blbabsb‘a..

page 251 line 15. e = {1, 1.7, 1.73, 1.732, 1.7320,
e o}
line 19 1,7320°°* —> 1.7320...
line 20 1.7320°°° —> 1.7320...
page 252 line 13 Should read:

For example, the unique positive
solution to the equation x® = 4,
x = 3% is inR ; the unique
positive solution to the equation

x? = 10, x = 210 is inR.

page 257 line 15 ax S aeX

line 18 = (7 + (-4)/I2 —> (T + (-4))/12
page 259 Problem 1. Re letter a —> J
page 260 Problem 13 Should read:

If a, b are real

numbers a > 0, b > 0

then ‘[f.:: = L/;

]
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Chapter 5

Section 6.7 p. 285 No. 4 c; ng 25

No. 6 e) {x: -2< x < 2}

Section 6.10 P. 294 Example 2: positive x-axis = 0T
without point O.
Section 6.15 p. 308 No. 6 (line 6 should read...)
-3 _ T7-3
5 = Iz
Section 6.17 p. 313 No. 7 G divides AF, from A to F, in

the ratio 2:1.
Simply AG:GF=2:1

Section 6.18 p. 317 No. 3 a) A(L, o) ; g
b A ,O
c 5:0) 2)
Section 6.23 {p. 327 No. &4 Omit last sentence
PART IT
Chapter 7

5 - line 9 should read 1.35—33 2.70

25- protlem 6, line 2  p, (%) =1
Ly- 1ast 1ine any t € B, t = f(a) for some 8 ¢ A,

. 48- problems 7)  graphs —s graph delete 3, 5.

o 2N > B = B « B o ]

56~ problem 2d change i to k.

o 13
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p. 57- problem 3 Second map k should be g;
p. 58- problem 6 xv—t-) 3 1instead of z
p. 70- To be noted by teacher after queipion ft end of page TO.

Y= X
Pl

On page TO of the text the above graph is what is
required in the last paragraph i.e. the function
f: x—»x® snd its inverse g: X=»~'X for the restricted

domain RY.

p. 7l- TFigure 7.21 The teacher should indicete to the class
: ' that the unit on the x axis is not equal to the unit
. on the y exis end then a projection to the function
curve will then give the unit measurement for the x

axis and hence 42 = 1.3
p. 73 - example 4, as given "or"

V2 _ NZ N5 _ NI

N5.~ N5 'JZ2~ 75
p. 77 - (6) (F, +, - ) is not a [field because (F\[c} . ) is

not a group.]

p. 79 - problem 6, (m) should read [n . g](10)

14
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Chapter 8

page 87 5th line from last
"which are which are less"
strike one of the "which are's"
page 81 Line 3 and 4
The World Almanac and daily newspapers
are "examples" of statistical ...
add the word "examples"
page 94 Paragraph 2, second line
"attention" misspelled. - atention
page 98 Exercise 1 (b) 1last word misspelled
"lenghts" should be "lengths"
page 107 last line: "total of the frequencies"
change to "sum of the frequencies"

page 113 Exercise 6. Point of con:iusion

"Find the mean number of
students per class, and compare it with

the median number of students."

Suggest dropping "number of students"
(See page 121 Exercise 2a) Wording is betper)

Chapter 9

p. 135 1ine 9 "OP' = 20P" not "OP' = 20P"

p. 152 1line 7 "r(0, 80)" not "R(0, 80)"
p. 153 1line 4 "r(o, 80)" not "R(0, 80)"

15
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k 1HE: - :
Number 12 Change "Prove ts HFOHBOHFOHA =1,

Problem 12 Change the order of compositon ts HFoHEOH OH

FA®

In the lemma "For any point X, if X F >X', then
F —>X'

x—8 >Xt' ", sheuld read "For any point X, if X

and if X—2->X', then F = G.

Number 10 should be starred

Exercise 1 After "Interpret" - add the following:
"Using these results, show that the set of translations
(in a plane) is a group under composition."”

Exercise 9 (¢) Should read "Let R, be..."

Figure at the top should be labeled "Figure 9.17"

lines 8-9 should read OA' is 20A....and OB' = 20B
Problem number 4 Should read "Given ABCD is a parallel-
and given a point P not on .the parallelogram"

Problem number 4 Should read "Show HOH,

Chapter 10

Exahple L(q) The diagonal should measure 25.

(1) Exclude phonograph record in paragraph 1.

(11) The rectangle in paragraph 3 should read ABJD
not ABCD. |

Exercise 4 Include words in terms of .

16
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Chapter 1

Mathemétical Loglic and Proof
(Approximate Time Estimate - 14 days)
General Introduction

Wnen teaching this chapter the teacher should be aware
of the role of logic in the SSMCIS program as a whole and in
Course II in particular. In the SSMCIS program, logic is
seen as a tool to be utilized by the student in constructing
a proof, or perhaps more correctly, as a guide for checking
the mathematical correctness of his own reasoning., 1In
Course II, this chapter is intended to help ease the transition
from the informal or pre-mathematical reasoning of Course I
to the formal proofs of Course II (as for example, in the
Groups and Affine Geometry chapters). Therefore, this
chapter should not be seen as a first course in formal
mathematical logic. The material chosen for inclusion in the
Chapter was deemed to be the minimum necessary for the student's
later work in the SSMCIS program, so that the teacher need not
be concerned with the fact that from an advanced point of view
t here are certain gaps and omissions. In most cases, it would
be inadvisable for the teacher to try to fill the gaps or to
add more advanced material, for to do so would greatly lengthen
the time spent on this chapter at the expense of other material.
Furthermore, full understanding and appreciation of the logic
used in mathematics requlres a degree of maturity and
experience that few students at this level can be expected to

o have, We strongly recommend, therefore, that teachers try

n A
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this chapter as it is written.

As illustrative examples, and in the exercises, material
from Course I has been freely used, both for purposes of
review and to bring to each new ldea some previous
mathematical experience of the student. While the review
aspect of such problems provides excellent opportunities for
the teacher, 1t should not be over-emphasized. Since the
entire program is organized in a spiral manner, all the
major topics of Course I will be reviewed and extended in
later chapters in Course II, so that if a student 1is blank
on some fact or area mentioned in an exercise, it is usually
wise to pass on quickly after a mimimum amount of comment

Examples and exercises drawn from non-mathematical

experience have been largely (though not entirely) avoided.

A B Ll AL wm reari ar e e -

We have found that examples of this type (use2d more often in
an earlier version of this chapter) sometimes confuse more
than clarify. The reason is that too much is connotated by
such an example, so that conclusions may be drawn that have
no relation to what was intended. It 1s possible that a
student will, for some reason, encounter serious difficulties
with some particular example in the text--difficulties not
directly related to the bit of logic or language involved.

In such cases it 1s usually best to move on with a remark

such as "Perhaps this. example is confusing you, so let's
try anothef." In thls way the teacher can usually determine

whether the student's difficulty is related to the logic.

O

18
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1.1 Introduction and 1.2 Mathematical Statements
(Time estimate including 1.3 = 2 days)

Several important ideas are presented in these sections:
the necessity for precision in mathematical language, as
opposed to ordinary language; the true or false nature of
mathematical statements; and the negation of mathematical
statements. The teacher should particularly reinforce the
student's understanding that these concepts are meant to
apply primarily to mathematical sentences.

In connection with sentences and statements, the concept
of an open sentence is introduced briefly. Open sentences
will be explored in greater depth in the following and later
sections, so that the teacher need not dwell on them here.
However, the student should be able to recognize an open
sentence.

In this and later sections, truth tables are introduced,
not as a means of defining connectives, but as a way of
summarizing the work alread& done. Some work with truth
tables is in the exercises; however, they are not intended
to be a foundation-stone for the chapter, as they might be
in a course on formal logic. It is important not to allow
the truth table for a connective to obscure *the meaning of
the definition or the rationale behind the definition,

These sections, and the text section (1.4) that follows,

are not of more than average difficulty.

19
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1.3 Exerclses

The first 11 exercilsesz are designed to give the student
experience in determining whet is and what is not a
statement. Exercises 12 through 21 provide v rk with
negations of statement and should lead the student to
discover a fundamental property of the negation: For any
statement S, "not (not (S))" 1is the same as S Exercise 22
is an extension of this principle.

Some of these exercises (12-22) may be omitted.

However, as a minimum, 16, 17, 18, and 21 ought to be done.

1.3 Exercises

1. Is a statement; false,

2, 1Is; true.

3. Not a statement, since it is a command and cannot be
Jﬁdged true or false,

L, Not a statement; truth value depends on replacement for
x. (This is an open sentence.)

Is; false.

Is; true.

Is; false.

@ N O W

. Is; false.

\o

. Is; false.
10. 1Is; true.
11. Is; true.
721 is noﬁ prime.__Originél is false.
71 x 27 #£ 1917. Original ;s true. f}ﬂ
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14, % + % 2 % : Original is true.

15. 71 is not less than 38 + 35. Original is true.
16. 1001 is not divisible by 13. Original true.
17. 1001 is divisible by 13. Original false,
18. 1001 is not divisible by 13.
19. (a) 7x3#3 in 3
(b) 7x3=31in3g
(¢) 7x3#3 in 2,
20. (a) 29 is prime.
(b) 29 is not prime
(¢) 29 is prime
21 (a) S
(b) not S
22 Not Q. General rule: If n is even same as Q; if n odd,

same as not Q.

1.4 cConnectives: And, Or - 1

Time estimate (Including 1.5) = 1 5 days

While this is an important section, most students should
have 1little difficulty with the main ideas--definitions of the
"and" and "or" compound statement. The definition, given for
the "and" compound statement is a rcasonable one in that it
corresponds with the experience of everyday language. Some
students may question the reasonableness of the definition for
the "or" compound statement, since in everyday usage, "or" is
most often used in an exclusive (disjunctive) way. Probably

no explanation will be cdmpletély”satisfying; perhaps the best

1
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the teacher can do is to indicate that the definition given
is the one that has been found to be most useful mathematically.
A similar difficulty comes in Section 1.6 when the conditional
statement is introduced.

Finding solution sets for open compound sentences
should not be considered as important as the first part of
this sectlon, so if a few students have difficulty at this
point, the teacher should not dwell upon it. Likewise, the
teacher need not expect all students to understand the
discussion of the negation of compound statements at the end
of the section. Some further work with these negations comes

in the exercises.

1.5 Exercises

The first ten exercises gilving practice in determining
truth values of compound statements are most important,
although better students will not need fo do all of them.
Exercises 11 and 12 throw additional light on the relationship
between the two types of compound sentences introduced in this
section, and should Le done by all students. Exercises 13 and
14 give some practice in using'truth tables and allow the
students to make some discoveries about the negation of
compound statements. One or both of these should be done and
discussed in class. _

Exercises 15-18 are discovery exercises dealing with the

solution sets of compound open sentences, and if the class is

29



having difficulty with the section in general, these exercises

might be considered optional or for the better students

Answers to exercises

1. True L, True 7 False
2, False 5. PFalse .8, False
3. False 6. False 9. True

10. True

11, "S and T" must also be false if "S or T" is false; no
conclusion can be drawn about "S and T" if "S or T" is
tre,

12, "G or H" must also be true if "G and H" is true; no

conclusion can be drawn about "G or H" if "G and H"

is false.
13. P Q not P Not Q P or Q (not P) and (not Q)
o F F T F
T | P F T T F
F| T T F T F
F | *F T T F T

*Note the error in the book.

Relationshlp between last two columns: always opposite in truth
value, Conclusion: "P or Q" and "(not F) and (not Q)" are always F
opposite in truth value, no matter what the truth value of P and |

Q are, so must be negations of each other.

23
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14, P| Q@ | not P | not @ { Pand @ | (not P) or (not Q)
T T F F T F
T | F F T F T
F| T T F F T
F| F T T F T

The last two columns are opposite in truth value, so (as in
Exercise {3) must be negations of each other.
15. Solution set for P: (6, 7, 8, 9, .. ]}
Solution set for Q: (..., &,5. 6, 7, 8}
Solution set for "P and Q": (6, 7, 8}
Solution set for "P and Q" is the intersection of the solution

set for P with the solution set for Q
16, ANB
17. Solution set for V: (4, 5, 6}
Solution set for W: (6, 7, 8, 9}
Solution set for "V or W": (4, 5, 6, 7, 8, 9}
The solution set for "V or W" is the union of the solution set
for V with the solution set for W.
18. c¢ybp.

1.6 Conditional and Bi-conditional Statements

e estimate cluding 1.7 = days

The definition of the conditional statement often proves
to be difficult for students at first, from experience 1t mey not
seem reasonable that the conditional is true when both an
antecedent and consequent arefalse or when the antecedent is

Q@  false and the consequent is true. An effort has been made in the

24
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text to smooth over these difficulties by preparing the way
for the definition with two carefully chosen examples--one
mathematical and one non-mathematical--which lend
reasonableness to the definition of the conditional statement.
When siudents experience difficulty with this definition,
the following approach (similar to that used in the two
examples) might be used. First, the teacher can ask the
student when a (given) conditional statement can be
definitely said to be false., The student should realize
that this can only happen when the antecedent is true and
the consequent is false. Then, since the definition is

to operate in a mathematical context, and the conditional
statement 1s to be a mathematical one, in gll other cases
it must be true. Unfortunately, this sort of argument is
not always satisfying. Students will recognize, as their
experience with mathematics grows, that this definition 1s
used because it is the most fruitful and reasonable one
mathematically.

The bi-conditional statement 1s important because it
leads to the notion of equivalence of statements. Here
again, students will most likely recognize only gradually
the power of equivalent statements. Note that using |
equivalent statements in a proof requires that the atomic

- statements (1. e. the smallest parts) of the equivalent
complex statements be the same. For example, a truth
table will show that the statements "A and not Al and

O > and nbt P" are equivalent, but this fact is not at all

05
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useful in a proof. The teacher may wish to point this out

after the exercises have been completed.

1.7 Exercises

Exercises 1-7, 9, 10 and 13 will give students practice
in determining the truth value of conditional statements, while
exercises 8, 11, and 12 deal with bi-conditional statements.
tote that of these, only one (Exercise 5) is non-mathematical.
Some students may argue that because this statement is non-
mathematical the definition cannot be applied and no
conclusion can be drawn about the truth or falsity of the
statement. This is certainly a valid argument and can help
the students discover the important dlstinction between
mathematical and non-mathematical statements and arguments,
Most students should do all of these introductory exercises,
some or all of Exercises 14-16 (finding negations of conditional
and bi-conditional statements), and Exercise 17, as a minimunm.
Exercise 18 is designed to illuminate an important point
about symmetry and transitivity of relations, using the
logic developed in this section (see answer to Exercise 18
below). Exercises 19 and 20 explore further equivalent
statements from the point of view of truth tables. Exercise
20 is more difficult thén the others and may be left to the

better students.

25
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Answers to Exercises

1. True

2. False

3. True

4, True

5. True (if we apply the definition and regard the antecedent

 as false)

6. True

7. False

8. False

g. True
10. True
11. True
12. True
13. True

14, 6 is odd and 3 x 6 1s even.
15. (a) 3 is even and 5 is odd, and 3 + 5 is odd.
(b) 3 +5 is even, and 3 is odd or 5 is even.
(c) 3 is even and 5 is odd, and 3 + 5 1is odd, or:
3 +5 1is even, and 3 1s odd, or 5 is even.
16. (a) 4 is odd and 3 x 4 is even,
(b) 3 x 4 is odd and 4 is even,
(¢) 4 is ,dd and 3 x &4 1is even, or:
3 x4 is 0dd and 4 is even,
Note: The bi-conditional "A iff B" is equivalent to the
compound statement "(if A, then B) and (if B, then A)."
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To negate this, we have "not (if A, then B) and (if B,
then A) " which, from Section 1.4, is equivalent to:

"not (if A, then B) or not (if B, then A)". Now, since
"not (if A then B)}" is equivalent to "A and not B," and
"not (if B, then A)" is equivalent to "B and not A", we
have finally "A and not B" or "B and not A" as the negation
of the bi-conditional "A iff B"., Hopefully, students will
be able to write this negation for the specific examples

of these two exerclses without going through this long and
rather formal argument. The teacher should not spend too

much time on these two exercises.

17. P Q {not Q| if P, then Q| not (if P, then Q)| P and(not Q)
T| T|] F T F F
T{ F{ T F T T
F| T|] F T I F
F| F| T T F F

18. R is symmetric; for, whenever xRy is true (i. e. only
when x = y), then yRx is true. R is transitive; for
whenever aRb and bRc are true (1. e. only when a = b = ¢},

then aRe is trm:ie also.

S or (s or T)
19. S|T|U |Tand U|Sor T|S or U} (T and U)|and (S or U)
TlT|T] T T T T o
T{T|F| F T T T T
T|F|T| F T T T T
TlF|{F| F T T T T
FlT|T] T T T T T
FlT{F| F T F F F
F|FlT| F F T F F
FiF|F| F F F F F




The last two columns have the same truth values at
every line, so the statements "S or (T and U)" and "(S or T)

and (S or U)" are equivalent.

If A, ,If (not C), If A, then
20, A|B|C |Bor C| not C|then B|then (if A, thenB)| (B or C)
T|T|T| T F T T T
T|IT{F| T T T T T
TIF|T| T F F T T
T{F|F| F T F F F
FlT|T| T F T T T
FiT|F| T T T T T
FIF|T| T F T T T
F|IF|F| F T T T T

1.8 Quantified Statements (Time estimate for 1.8 - 1,10 =
1 1/2 days)

This section develops the concepts of universal and
exlstential statements and quantifiers. Many examples are
gilven emphasizing the different forms statemgnts can take.
Negating s quantifiéd.statement is described and it is
suggested that teachers elther have the students form the
negation of each of the examples in this section or do'some

of the 1.10 exercises in 61ass.

1.9 Substitution Principle for Equality (SPE)

This section defines SPE and shows that left operation
\‘1 ‘ .
FRICa result of it. The main idea of this section can be

318} ) o
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emphasized with just a few examples since it can be

re-emphasized in the sections on inference and proof.

1.10 Exercises (exercises 19 and 20 migrt pose difficulties.)

1. True Universal
2, False Universal
3. True Existential
L, True Existential
5. False Universal
6. True Existential
T. False Universal
8. False Existential
9. True Existential
10, False - Universal
11, True Existential
12, Palse Universal
13. Palse Universal
14, True Existential
15. False Universal

16, Negations
1. Some line reflections are not isometries, Existential.
2, Some isometries are not line reflections. Existential,
3. All line reflections are not isometries. Universal.
4

. All isometries are not line refleections. Universal

"3
S
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17, Negations
5. For some integers x and y, x°y® is odd.
6. For all integers x and y, x°y? is odd.
18, Negations
10. Por some mappings s and t, sot # tos,
11, For all mappings g and h, goh = hog.
19. True. '
Negation: for some integer s, there does not exist an
integer t such that t > s.
20, False
Negation: for all integers x, there exlists a y such
that y < x.
21, SPE is ;éed for the following substitutions

37T =30+ 7

53 = 50 + 3

30 x 50 = 1500
T x 50 = 350
30x 3 =90
Tx3=21

1500 + 350 + 90 + 21 = 1961
22, SPE is used fee the following substitutions
0=0+20
'r+«(0+0)=r 04+r .0

1.11 Inference (Time estimate including 1.12 = 2 days)

In this section, 5 rules of inference are discussed and

: :11Amany examples are giveﬁ. It is important for each example to
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point out the form of the argument and to remind the student
not to base conclusions on any outside or previous knowledge
but only on what 1s assumed true. In order to separate the
role of inference from the truth value of statements,
examples are used where false statements are assumed true
(as in example 3d page 41). If form is cons....2d, these
examples should pose no problems. It will be helpful when
going over the examples to assign letter names to the
statements and to classify the form of the argument presented.
It should also be'pointed out to the students that
statements of the form "all A are B" can be interpreted as
"if x is an A then it is a B."
Example 7 (page 44) which states "all isometries
preserve angle measure" is of this form and can be interpreted

as "if x is an isometry, then X preserves angle measure,”

1.12 Exercises

These exercises are concerned mainly with form, It
might be a good idea to have all students do Part (1) for
exercises 1-15 (that is state the inferences) and to assign
some problems to each student to complete part (2). Note
thét Problem 12 is the most complicated. Question 16 should
be attempted after the other questions are fully understood.

This problem might also be used as & special assignment.
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Answers to Exercises
1, P: 1 Toss a Fair coin
Q: The probability of getting a tail is 1/2
Assumed true, if P then Q, P
Conclusioh, Q
by inference Rule (1), Rule of detachment
2, R: Set A is & subset of every set
 8: Set A is the empty set
Assumed true, if R then S, not S
Conciusion not R: set A 1s not a subset of every set
by inference Rule (2)
3. P: Sets A and B are the complements of each other
Q: The union of the two sets is the universe
Assumed true, if P then Q, Q
No conclusion
L4, R: The image of point A under a reflection in
point P is A'
S: P is the midpoint of AA'
Assumed true, if R then S, R
Concluslon, S
by inference Rule (1)
5. A: M is parallel to N |
B: M 1s parallel to P
Assumed true, A or B, A
No conclusion

6. P: B is between A and C

EMC Q: AB + BC = AC

a9



10.

11,
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Assumed true, if P then Q, not Q
Conclusion Not P, B is not between A and C
by inference Rule (2)

The natural number 7 is even

The natural number 7 is odd
Assumed true R or S, not R
Conelusion, S

by inference Rule (5)

x and y are both pc.itive

The product of X and y is positive
Assumed true, if A then B, B

No conclusion

The sum of & and b 1s negative

At least one of a, b 1s negative
Assumed true, if P then Q, not P
No conclusion

X and y are both positi&e

The product of X and y 1s positive
Assumed true if R theh S, not R
No conclﬁsion

2 and b are rational numbers

There is & rational number between & and b
a and b are greater than five,
Assumed true if P then Q, P and R
Conclusions, P 'rom P and R by
inference rule (3) |

then Q by inference rule (1)
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12, This example contains mofe simple statements than first
meet the eye. One way to attack this problem is as follows:
x > 8 is equivalent to x > 8 or x = 8
]x - 5]>3 1s equivalent co x > 8 or x < 2
and y 2 5 1s equivalent to Not ¥y < 5

therefore assign letters as follows:

A: x> 8
B: x=28
C: x<K2
D: y<5

Our original statements which we assume true then become:
- "if (A or B) then Not D",
"(A or C) and D"
from the second statement we can infer
D using inference Rule (3)
D is equivalent to not (not D)
Thus we can infer not (A or B)
from the first statement using inference Rule (1)
Not (A or B) is equivalent to "Not A and Not B" from
this we can infer Not A using inference Rule (3)
From the second statement we can also infer A or C
using inference Rule (3)
Finally from thellaSt two conclusions we can infer C
using inference Rule (5)
Thus our conclusion 1s_x'< 2,
13, P: a number is divisible by 8
. Q: a number is divisible by 4

35
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R: @& number is divisible by 2
Note the use of the universal statements,
In this case the substitution instance is 88
for the term "a number"

Assumed true: 1f P then Q; if @ then R
' and P.

Conclusion Q by inference rule (1)
then R also by inference rule (1)
Thus the specific conclusion reads 88 i1s divisible

by 2.

14, A: x=3
B:r x=14

c: y=1

Assumed true A or B, if A then C, not C
Conclusions first not A using the last two
statements and inference Rule (2)
Then B dsing inference Rule (5)
15, P: AC=AB
Q: B is onjﬁa
R: AC N ZE;==,A
Assumed true, if P then Q
PorR
Not Q
Conclusions Not P using inference Rule (1)
Then R using inference Rule (5)
16. The murderer was the stepson.

Using letter names the argument becomes:

A: The butler murdered Mr, X
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B: The stepson murdered Mr, X

C: The murder occurred before midnight

D: The stepson's testimony 1is correct

E: The house lights were turned off at midnight

F: The butler is wealthy

1. AorB

2, If A then not C

3. If D then C

4, If not D then not E

5. E and not F
From 5. infer E Rule (3)
From E and 4, infer D Rule (2)
Frem D and 3. infer C Rule (1)
From C and 2. infer not A Rule (2)
From not A and 1, infer B " Rule (5)

1.13 Direct Mathematical Proof and 1.14 Indirect Mathematical
Proof (Time estimate inciuding 1.15 = 3 days)

These two sections give detailed and rigorous examples
of direct and indirect mathematical proofs emphasizing three
strategies. Thé emphasié here should be on the strategies
used not necessarily on the rigor since, as mentioned in the
text, abbreviated forms of proof are usually given and the
degree of abbreviation will depend to a great extent on the
individual teacher and hls students. A careful analysis 1is
given of the proof of the statement "if a and b are even whole

numbers, then a + b is even." Students should be reminded

27

]
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that although they may give eobreviated forms of mathematical

proofs, a simi;gr analysis of 2ll steps should be possible

and they should be able to justify all conclusions,

1.15 _ggercises

1. Theorem C, If a or b is even,

then a+b is even

Proof (Given on pages 52-~53)

Analysis:
Step 1,

Step 2,

Step 3.

Step 4,

The strategy here is to assume the antecedent
true and to show the consequent follows also

as true,

This 1s an argument by cases that 1S for

"a or b is even" to be true "a is even" or
"p is even" or "both a and b are even" will
be true, We take the first case as true and
claim a similar argument will hold for the
other cases,

Using the definition, N is even if and only
if N = 2M for some M in W, and the assumption
a is even from Step 2 we conclude a = 2x by
inference Rule (1)

Right operation principie states that for
any X, ¥ 2 in S, if x =y thenx 0 2 =

y oz in (S, o). In particular using

a = 2x then a*b = (2x)*b in (W, ")

RSN

"ag
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Step 5. The associativity property of multiplication
in(W, ) states, if x, y, z are elements of W,
then (xy)z = x (yz). Since 2, x and b are
elements of W, inference Rule (1) justifies
the statement (2x)b = 2(xb),

Step 6. Using the statements of 4 and 5, SPE justifies
stating a+b = 2(x+Db) |

Step 7. The closure property and inference Rule (1)

| Justify this statement.
Step 8. Inference Rule (1) and the definition given
above justify this statement |
2. Theorem: Let a, b, and ¢ be whole numbers. If a
divides b and b divides ¢, then a divides
c.

Proof: A direct strategy is used.
Steps Reasons

1, a divides b and b divides c. 1, Assumption

2, a divides b, 2, Inference Rule (3)
3. b = ax for some x in W, 3. Definition of divides
. b divides c. 4, 1Inference Rule (3) on
5. ¢ = Dby for some y in W, step 1
6. ¢ = (ax)y. | 5. Definition of divides
7. (ax)y = a(xy). 6. SPE step 3 in step 5
8. ¢ = alxy). | 7. Associativity of Mult.
9. xy is inW. | 8. SPE step 6 in step 7
10. a divides c. - 9, Closure property
Q- | 10. Definition of divides
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3. Assertion: If a + b is odd and a is even
Then b is odd,
Proof: An indirect approach is used,
We will assume "P and (not Q)" and
show a contradiction.
1. a+b is odd and a 1s even 1. Assumption

and b is even.

2, a+ b is odd. 2, Inference Rule 3
a is even. used twice
b is even
3. a and b are even 3. by inference Rule 4
L, a + b is even L, Theorem A
5. a + b is both even 5., Steps 2 and 4
and 6dd.

Therefore "P and (not Q)" has led to a false statement and
must iﬁself be false.

4, Assertion: If a + b is even, then & is even and b is even.
Counter example:
5 + 3 1s even but 5 is not even and 3 is not even,
This assertion 1s not true. The one counterexample above ‘
disproves it. Thls exercise was included to'point‘out to
students that because something is asserted does not mean
it is true.* This exercise can aiso be used to point out
to students that only one counteréxample is needed to
disprove an assertion.
*#*Tt will be interesting to see just what "pfoofs" if

any are given,

A0
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Assumption

Inference rule (3)
Step 2 and

Inference rule (4)
Theorem B

Theorem C
Distributive property
of (W, T )

SPE step 6 in step 5

5. Assertion: If a, b and ¢ are odd,
Then ab + ac is even
Proof: A direct strategy is used.
l, a, b, and c are odd 1.
2, a is odd. 2,
b is odd. 3.
c is odd.
3. b and c are odd b,
4, b+ c is even 5.
5. a *(b+c) is even 6.
6. a *(b+c) = ab + ac
7. ab + ac is even 7.
1.16 Summary (Time estimate including 1.17 = 1 day)

1.17 Review Exercises

1.

a.
b.
c.
d.

True statement

True statement

Not a statement - a command.
False statement

False statement

The compound statements are easily formed by inserting"and”

or“or?bétween the two simple statements.

The negations are formed by changing

a)

[ n L4
are to ‘are not, and

“1s"to"1is not".
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b) = to #, and
"Every prime number has“to " Some prime numbers do not have"
c) > to<, and
*Some triangles have"to“Every triangle does not havef
d) “1s"to'1is not, and
“Al1l cats have to Some cats do not have.
The negations of the compounds are easily formed if we
consider "Not (P or Q)" equivalent to "Not P and not Q"
and "Not (P and Q)" equivalent to "Not P or not Q."
3. (a) ifa>b thena+c¢c> Db+ c.
True
(b) if x # O then x® > 0.
True
(¢) 1f x/x #1 then x =0
True
4, (a) I do not go swimming
(b) the water is not cold
(¢c) No conclusion
(d) No conclusion
(e) The Yankees did not win the pennant.
The Yankees.did not play well,

(f) (742)2 is an integer
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Chapter 1: Suggested Test Items

I. Given the following 3 statements:
A: 222 is prime.
B: 223 is & multiple of 17.
C: 17 is even.
Where A and C sre false and B 1is true,
a8) Write out the following statements and give their

truth values

1 A and B:

2. If C then B:

3. A orC:

4, Not A:

5 If not A then C:

5. Not B and not C:
7. If B then not A:
b) Using the simple statements A, B, and C form an
example of esch of the following compound statements.
(use examples different from those given in part a).)
1. a false compound and statement
2. & true compound or statement
3. a false conditional statement
4, 8 true biconditional statement
II. In esch of the following, assume the given statements are
trué and determine whset inferenées you can make.

a) If N is avpétural number, then 2¢N is even. 5 is a
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natural number.

b) X is an even number or x is a perfect square. x is
not an even number.

¢) If x is even then X is not a perfect square. x is
8 perfect square.

d) a>bendb<c. Ifb<cthena =d.

e) If 8 is a factor of x then 4 is a factor of x.
O is a factor of x or 8 is a factor of x.

4 is not a factor of x.

IIT. Explain what is mesnt in mathematics by the term proof.
Include in your discussion the differences between direct
and indirect proofs and describe if possible strategies

used in proving mathematical statements.

Answers to Suggested Test Items

I.a) 1. 3223 is prime and 323 is a multiple of 17. False
2. If 17 is even then 323 is a multiple of 17. True.
3. 323 is prime or 17 is even. PFalse.
4, 323 is not prime. True
5. If 323 is not prime then 17 is even. False.
6. 323 is not e multiple of 17 and 17 is not even. False.
7. If 323 is a multiple of 17 then 323 is not prime. True"
b) 1. "A and B”
"A and C"
or "B and C"
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2. "A or B"
"B or C"

(o))

"if B then A"
" if B then C"
4, "A iff C"
II' a) 2°'5 is even
b) x is a perfect square
c) x is not even
d) a=24d
e) 2 is a factor of x
III. The mein points which the students should include are the
following:

A mathematical statement to be proven is usually in the
form of a conditional. A prcof consists of a sequence of
statements leading to the desired conclusion, Esasch step
is Justifiable as an axiom, definition or theorem, or as
the result of an inference from previous statements. A
direct proof begins by assuming P true and showing Q@ will
follow as true also. An indirect proof begins by assuming
Q false and shpwing that P would.fbllow also as false or
by assuming "P and (not Q)" and showing that this leads to &

contradiction.
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Chapter 2

Groups

Time Estimate for Chapter: 16 - 17 days

The principal objectives of this chapter are to:

1. become aware of the great prevalence of groups in mathema-
tics,

2. learn the definition of a group,

3. appreciate the unifying power of group theorems,

4, be exposed to another axiomatic system,

5. be exposed to additional proofs at a more formal level,

6. learn of permutations and permutation groups,

T. learn functional notation,

8. learn the meaning of a" for an operational system,

9. learn a few basic group theorems and their proofs,

10, learn what an isomorphiém is and what isomorphic groups are.

2.1 Definition of a Group (Time: 3 days)

In 2.1 an effort 1s mede to convey the importance of groups
by showing how prevalent they are and how thejr might serve to
unify apparently diverse situations in mathematics. Many il-
lustrations of groups are provided before arriving at a defi-
nition of a group.

Time should be taken with this inital section because
of its great importance in developing the definitions and pro-

Q nerties of flelds and rings which occur in subsequent chapters

AR
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and courses. The program stresses the use of groups in

explaining the step by step solution to linear equations.

2.2 Exercise

1. (a) 1 (v) 0 (e) e
2. (a) =5 (®) F () 1 () x (o) 3
3. (a) No identity, not associative
(b) No operational system
(¢) O has no inverse
(d) No identity element
(e) 2 has no inverse
(£) No "dentity element
(g} No identity element
(h) No operational system
(1) No element has an inverse except 1.
(j) No identity element
(k) No identity element
{1) No operational system
(m) No identity element

(n) O and 2 do not have inverses

- B < /> B o]

WoB w0

g P2 BB

B ow W e

> t n (|
\

() {S,L,A,R} a set of commands

&y
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() followed by assigns to evefy pair of commands a command.
(¢) Stay or S
(a) Yes
() (1) - (¥) All Yes
(f) Yes. Associativity, unless each command is regarded as
a mapping.
> o (0,0)  (0,1)  (1,0)  (2,1)
(0,0) (0,0) (o,1) (1,0) (1,1)
(0,1) (0,1) (0,0) (1,1) (1,0)
(1,0) (1,0) (1,1) (0,0) (0,1)
(1,1) (1,1) (1,0) (0,1) (0,0)
(a) (0,0)
(b) (0,1)
(¢) [(0,1) ° (3,1)] ° (3,00 = (3,0) © (1,0) = (0,0)
(0,1) ° [(3,1) ° (3,001 = (0,1) o (0,1) = (0,0)
(d) Yes
6. (a) Yes (b' No, not associative and no identity.
7. (a) Yes (b) Yes (c) Yes (d) 1,k
8. (a) (2,°) and others. | - o
(0} 4 01 2 Not associative as (1ol) 02 = Oo2 = 2
0 0 i 2 and lo(1lo2) = 101 = O
1 1 0 1 O is the identity element. Each
2 2 1 0 element is its own inverse.
(e¢) (2, aob = larger of {a,b’)

A8
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(4 01 2 Not associative as (lol) 02 = 0 o 2
0 0 1 2 and lo(lo2) =101
1 1 01 Identity is O
2 2 1 2 2 has no inverse

g. (a) No, there is no identity

(b) Yes

() 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 13 6 2 5 1 4
L 4y 1 5 2 & 3
5 | 5 3 1 6 4 2
5 | 6 5 4 3 2 1

(Z» \ {03},.) is a group.
({1,6}, *) is a subgroup, and there are others.
10. No; there is no identity
.11, (a) Yes_.. (v) Yes (c¢) No
12. Yes; na + nb = n(a + b)
* 313, (T,°) is associative since (S,0) is. If x € T, then
xI € T. Therefore x o xI =2, e ¢ T.
14, (a)

s {1 Y @ (a,b)
(1. {2l (o} {a,b)
{a}| fa} {1 {a,p) (b}
1] (b} {a,p1  { ) fa)
{22} fa,01 b} fat {3

49
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(b) { ) is the identity element

(¢) (0} = (b)

(d) ({a} & {b}) & (b} = (a,b} & (b} = {a}
(a} & ({v} & (b}) = (a} & ( } = (&)

(e) Yes. It possesses the required properties.

ey () (&) () (e} (a,b) (a,c) (b,c) (a,b,c)
(]} () {a) {v} {e} (a,b} {a,c} (b,c} (a,b,c)
{a] {a) (1 (f{a,b} f{a,c} (b} (c} (a,b,c} {b,c]
(b} (b} (ayb} ()} {b,e} f{a} {a,b,c} (c)} (a,c]
{c) {c} ({ayc} (bye} (} {a,b,c} () (b}  {a,b]}
{a,b]} {a,p} (b} (a}l (a,b,e} ()} {bse} (a,c} (e}
{a,c]) {a,e}  {c} (a,b,c} {a} (b,e} ()} (a,b} (b}
{b,c} {b,c} {a,b,c} (c) (v}  (a,c} (a,p} (]} {a]
(a,b,c) | {a,b,e) {b,e} (a,c)} (a,b} (e} (b} (2} (]

(b), (c), (d) same as exercise 11
6. (a) (0,0), (0,1), (0,2), (1,0), (1,1), (1,2)

(o)
e o) (0,0)(0,1) (0,2). . (1,0)  (1,1)  (1,2)

(0,0) | (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
(0,1) | (0,1) (0,2) (0,0) (1,1) (1,2) (1,0)
(0,2) | (0,2) (0,0) (0,1) (1,2) (1,0) (1,1)
(1,0) | (1,0) (1,1) (1,2) (0,0) (0,1) (0,2)
(1,1) | (1,1) (1,2) (1,0) (0,1) (0,2) (0,0)
(1,2) | (1,2) (1,0) (1,1) (0,2) (0,0) (0,1)

X Identity element is (0,0)
8
ERIC
'Full Text Provided by ERIC ) 5 O
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17. (a) (1) (2,+) is an operational system with addition
being associative. The 1ldentity element is
0. The inverse of any element a 1s its additive
inverse -a.
(2) (@ \ {0},°) 1is an operational system with multi-
plication being associative. The identity is
1, the inverse of every element'% is its reci-
procal %. |
(v) (1) (z \ {0},+) is not an operational system as
-1 + 1 is not in the set Z \ {0}.
(2) (Q,°) is not a group because O does not have
an inverse.

18. (a) 2% - 2P = 22%P 45 gefined for all a, b in Z.

(b) (aa.ab)- oC (2a+b) . 28 o 2(a+b)+c _ 2a+(b+c)
23 . (Eb.zc)

Hence we have associlativity.

a b+c) - 2a+(b+c)

2% . (2

i

~0

20 4s the identity element as 2°0 - 2% = 297 _ 5
2a . 2O - 2a+0 - 2a
S e tnverss of 2% 1s 2% as 2% T B L 488 _ 0.

(¢) The identity is 20 or 1.
(24)1 - 2-4; (2-3)1 - 23; (QIfI - 2-1; (20)1 - 20
19, In (Zn,-), 1l is the identity. O can have 1o inverse since
there is no element a such that 0 . a = 1.
# 20, If n = 2, the set is {1}, and there is a group of one
element, Suppose however n>2 and n is eve@. Then'% = K

is- in the set. Thus, 2 and k are in the set. However,

51

¢
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2 « k =0 is not in the set.
* 21. p and g are both less than n and hence are in Z . How-

ever, p * q = O is not in Zn'

2.3 A non-Commutative Group

In 2.3 the student is exposed, for the first time, to a
non-commutative group. Since all previous groups discussed
were commutative, the student often draws the conclusion
that all groups are commtative. This vivid example of

a non-commtative group is intended to steer the students'
thinking vack on those properties that are essential for

a group as opposed to those that are not essential.

2.4 Exercises
Exercise 1 1s a good illustrative example and may be done
with the students in class. The remaining exercises czn be

assigned for homework,

1. (a) e: abc r: ach
i s p : bca e - - s: cba et e
q: cab t: Dbac

(p) e and r do not alter the position of a

e and & do. not alter the position of b
l L3

e and t do not alter the poriition of c

() (1 t) (1) fr)
(2) {s} (5) f{e,r,s,t}
(‘E (s} (6) {a}
ERIC ‘f

r
J“ L



(d)

(e)

(f)
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(7) {1 (14) {t}
(8) {s1 (15) {e}
(9) {»} (16) {e,p,q,r}
(10) {s} (17) {r,s,t}
(11) {e,p,q} (18) {s}
(12) {e,r} (19) (e}
(13) (s} (20) {e,p,q}
(1) (poq)I = e, pquI = e, qupI = e. All are e.
I I I

s, (por)I = r op

(2) (por)I = 8, pIor = t, rIopI
(3) (qot)I =8, qutI =1, tquI s, (qot)I = tquI
(4 (xop)?
(5) (DT =p, (@hHf=q, (N =7, DT =x1s

I
~

O
”

e
(]

the conjecture.

the conjecture.

({e,p,q], o) is an operational system for:

ole p a

e e p aq
p p 4q &€

The ldentity element is e.
Associativity follows from the fact that ({e,p,q,r,s,t},o)

is a group.

({e,p,q],o) has the inverse property for pI =q,

qI = P, eIh= €.

The subgroups of ({e,p,q,r,s,t},o) are: ({e},o0),
({e’p’q}’o)’ ({e’r}’o)’ ({e’s}’o)’ ({e’t]’o)’

=9

3
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({e,p,q,r,8,t},0).
(g) (1) f{e,r}, {qoe}, {gor} = {q,t}, {sce,sor} = {s,p},
{e,p,q,7,5,t} = {e,r} y {qa,t} u {s,p}.
(2) {e,r}, {eop,rop} = {p,t}, {eoq,roq} = {q,s}
{e,p,q,7,8,t) = {e,r} U (p,8) U {a,8)
(3) (a) f{e,s}, {p,t}, {a,r}
or {e,s} {p,r}, {a,t}
(b) .{e,t}, {p,r}, {a,s}
or {e,t}, {p,s}, {a,r}
(¢) {e,p;a}, {r,s,t}

2. (a) (/1 2 3 4 and 1 2 3 4
L1 2 3/ 2 4 1 3
() f1 2 3 K and 1 2 3 &
31 2 4 3 1 2 4
(e) /1 2 3 & and 1 2 3 4
2 1 4 3 3 4102
() 1 2 y and 1 2 3 4 yes
y 3 1 y 3 2 1/,

'3
2
3 A B C A B C D
(a) s, = (b) 3. =
D ¢ B A y B ADC
(A B C D
(e) P _= (4) o e fy Iy P,
c A B
e e ‘x zy Po
Ly Iy © Fo by
Iy zy Po e zx
Po P zy zx e

(e) (fest,584,R,1,0) is a group.
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2.5 More on Permutations (Time for 2.5 -~ 2.8: 2 days)

In section 2.5 there 1is a discussion of 1-1 into and onto

mappings S S. For a finite set 1-1 into and 1-1 onto

S

S conditions for a mapping are the same, each implying
the other. For infinite sets this is not the case.

2.6 Functional Notation

In section 2.6 functional notation is discussed briefly.

It is important o relate functicral notation to meppings.

2.7 More Notation

In 2.7 exponential notation for an operational system is
discussed. If there 1s but one operation, then there should
be no cenfusion. If two operations are present then multipli-
cation is the one that is used for exponentials. Thus 32 in
(Z,+) means 3 + 3 but in (2,+,°) 32 means 3 - 3. However,
it is vetter to avoid the symbol 32 when working with (Z,+).
The use of a coefficient is better. Thus, in (Z,+) rather

2.

than using "a

a® = a + a and 2a = a + a, for (2,+).

use "2a", although according to our convention,

2.8 Exercises

1. (v) (¢) and (d) are 1-1, onto, and permutations. The
others are none of these.

2, (2) None.
(b) 1-1
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(e¢) 1-1, onto, permutation.

(d) 1-1, onto, permutation.

(e) onto. Note: For every positive integer k there is
a positivé integer n such that

N A SO R 1
k = E+2+3+E+~-+J
3. (a) There are many answers. We give but one for each

mapping.
Domain Range
£y {-3,-2,-1,0,1,2,3]} {0,1,4,9)
£, Z Even Integers
(b) £, Even Integers z
fe Even Integers Z
Ty Z Z2 U %)

4, (a) None.
(p) 1-1, onto, permutation.

(¢) 1-1, onto, permutation.

(a) None.
(e) None.
5. (a) 4/9 () .65 (o) 23
(b) 56.25 (1) 9 (p) .8
(c) 549.025 (3) 6.25 (a) 3/7
(d) o/64 (k) 18 (r) 1.25
(e) 81 (1) 12.5 (s) 1/49
(f) aaaa or ot (m) 3 (t) 1/49
(g) 6.5 (n) .9 | (u) 49/50 or .98




(2)
(v)
(c)
(a)
(e)
(£)

(2)

(b)

(e)
(a)
(=)
(b)
(e)
(a)
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5 () 5 (m) 5/4

-4 (h) 5 (n) -4

1/5 (1) 5 (o) 5/4
-1/b (3) 5 () 45

5/4 (x) 5 (a) =-1/4
4/5 | (1) 1/5 (r) 4/5

o f, fa f, £, f5 fo

fy fy fa £ £, £y fq f,: n-—-n
fa | foa f, f, fo fq T4 fa: N-—elen
£, | £, f4 £, f4 £, £,  f3i ne—e=z
£, | £, fs fa £ £, £ fof N— T
fs | £ £, fo T2 £, T fg: N—ec=Cx
fo | fo f5 f5 £, f3 £, fo: n—21
If we make the following replacements the two tables

will be identical except for the arrangement of rows

and columns.
fi——~e

foor————Ss

Yes

(£, 0 £,)F = £q'= £,

Y (a) o
1 (e) 3
9 (£) 3
(£2)(5) = £,(5) = 4/5

f:‘-q
fgoe——"t

fad——o P

(b) same as (a)



(c) (ff)(ﬁ) = f,(5) = ~1/4 (d) same as (cY

10, 1=3° 4 = 3*
2=3 5= 3°
3= 3 6 =3
1=75° 4 = 5°
2 =5 5=5
3=5 6=5

11, Slide Rule construction.

12, 1=2°=6% = 7°=28°=10° (e) (1) s
2-2"26" = 7°=8 =1° (2) 1
3=2"26 = 7"=8 =10 (3) 10
y=2"=6" = 7" =8" =10 (1) 5
5=2"=6" = 77 =8 =10
6=2"=6" = 77 =8"=10"
7=2"=6 = 7 =8 -10*
8=2"=6 = 7 =8 =10
9g=2"=6" = 7°=8" =10

10=2"=6" = 7° =8 =10

Hence, we could use powers of 6, 7, 8 as well as 2 for

our slide rule contstruction.

2.9 Some Theorems About Groups (Time: 5 days)

In 2.9 elght basic group theorems are proved. Take time
with the proofs. Make sure that the reasons for the steps are

understood. A common difficulty is to give an incorrect reason.
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The position should be taken that unless a correct reason is
available fcr a statement in a proof the statement should not
be made.

There are a varleily of apprcaches that may be followed in
addition to those taken in the text. Students should be encou-
raged to use thelr ingenulty in varying the approaches and

methods used in proving these group theroems.

2.10 Exercises

Exercises 5 and 7 are excellent for classroom demonstra-
tions. They demonstrate gll of the group theorems presented
in section 2.9.
1. (Z,,+) (z,\ {0}, ")

(a) (30T = 4T - 3 (3HT =51 =3

(b) 3+m)T=0%=0

et on+3-0

(c) (3 ml=s5t-3
W3l o25=3
2. (ao b)I = ploal Theorem 8
= aI o bI This group 1is commutative.
3. Let x and y be any palir of elements in the group. We
must show that x o y = y o x.
(xH)T - x (_yI)I =y Theorem 7
X0o0y=xo0%y¥y Equallty is reflexive
x 0y = (x)To(y")? Replacement
= (VIOXI)I Theorem 8
Q . (yroxT) T = (XIOVI)I Assumption




Xo0ys= (onyI)I
= (vHo(xh?
=yox
(a0 aI)o(aI)I = aof
eo (aI)I = a
(aht = =

(aob)f = (aop)
(aob)Io((aob)o(bIoaI))

(aob)lo({(aob)obI}oaI)

57 -

Equality is transi%ive

Theorem 8
Theorem 7
an(aI)I) Associativity
o e Definition of Inverse

Definition of e
Equallity is reflexive.

((aob)Io(aob))o(bIoaI)

- Associativity

I I

e o (b oa Associativity and

L}

definition of inverse

(aob)Io({ao(bobI)]oaI) = bloal Associativity and
definition of identity

(aob)Io([aoe}oaI) = ploal Definition of inverse
(aob)Io(aoaI) = vloal Definition of e
(aob)Io e = bloal Definition of inverse
(aob)I = bloal Definition of e
(a) (por)l = s¥f =5 and

pIorI = qor = t
(v) rIopI =roq = 8§ = (por)I from (a)
{c) (pos)I =%, pIosI =r, sIopI = t therefore

(pos)I £ pIosI, (pos)I = .sIopI and many other pairs

will do.

fa) aga=ao0 ol = e
(b) ace=ao0 el=20e=a
(¢) ao al = ao (aI)I =ao0a



(d)

(e)

(g)

(h)

(1)
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o

fo

o
li li
o p
fo o
o o

0
{o
o
1
0
{o
)

]

Q
jo

Loy

ao cI =Dbo cI

a =0b
coa=c¢cob
co aI =Cc 0 bI

aI = bI
a” o a-= bI o a

e = bI c a

boe=bo (bI o a)

b=(bobl)oa

b=eoa
b=a
a=D
(aob) ob=(ao bI) ob
= a o (blob)
=ao0e
= a
(rob)ob=(aob)obd
=ao(bo bI)
=ao0e
= a
ao(boc)=ao(bo cI)

Reflexivity of equality
Replacement

Reflexivity of equality

Heplacement

Assunmption
Definition of o
Riglr.¢ cancellation
Assumption
Definition of o
Left cancellation
Right operation
Definition of aI
Left operation
Definition of e and
agsoclativity
Definition of bI
Definition of e
Equality 1s symmetric
Definition of o
Associativity
Definition of b
Definition of e
Definition of o
Assoclativity
Definition of b
Definition of e

Definition of

lo
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= (a0 b)o el Associativity
=(aob)oc Definition of o
(k) ao (boc)=ao(bo c)I Definition of o

ao (cI o) bI) Theorem 8
I. I

= (aoc)ob Assoclativity
=(aoc)obd Definition of o
(1) (2aoc)o(dgec)=(aoch)o(voecl)

Definition of o
= (ao cI) o ((cI)I o bI)
Theorem 8
Ty

(a o cI) o (cob

Theorem 7

(a o (cI oe)) o pT

Associativity

(aoe)o ol

Definition of inverses

I

aob Definition of e

aob Definition of o

(m) (agbv)o(cod)=(ao bI) o (co dI)
Definition of o

{(a o bI) oc}o al

Assoclativity

{a o (bI oc))o al

Associativity
I

{ao(co bI)} od

(s,0) is a commutative
group.

2




= {(aoc)o bI} o al
Assoclativity

= (aoc)o (bI o dI) ;
Associativity i

=(aoe)od{do b)I
Theorem 8

= (aoc) o (dob)

‘ Definition of o
=(aoc)o (boad)

The group is commutative.
vT) o (c o ah)?

Definition of o
vT) o ((aT)? o )

Theorem 8
1)

(n) (2a2b)g (coad)

]
—~
o
(o]

B
)
(o}

= (a0 bI) o(doec
Theorem 7
d) o (cI o) bI)

Associativity and

[}
—
o
(o)

Commutativity
=(aod) o (vo ¢)t
Theorem 8
= (aod) o (boc)
Definition of o
8. note a =0 should be a = 3.
(a) a. 3+ (-3) =0
b, 3+ (-0) =3
c. 3+=-(=3)=3+3=6




- 61 -

d - g cannot be done since the assumptlons are false.

he (3 + (<2)) + 4 =3
1. (3 +4) + (-4) =3
Jo 34+ (4 +(-5)) = (3 +4) + (-5)
ke 3+ (=(445)) = (3 + (-4)) + (-5)
1. (3 +(-5)) + (5+ (~6)) =3 + (~6)
m. (3 + (-4)) + (5+ (-6)) = (3 +5) + (~(4 +6))
ne (34 (=4)) + (~(c + (-d))) = (3 +6) + (-(4 +5))

(b) a. 3 x-% = 1

b, 3x%=3

1

- -

c. 3x 3x 3

h, (3 x'%) x4 =3

1. (3x4) xg=3

J. 3 x (4 x 2) = (3 x 4) x 3

5 5

1 1 1

k. 3x11—x-§ =(3X-E)X'5‘
1 1 1

1. (3x—§)xi—-;-;5-=3xﬂ

m (3x) x(5x%) =(3x5) x pip

. 3x3)x—L- =(3x6 L
n ( X'E) X 5 x % ( X ) x E—i—g

2.11 Isomorphism (Time: 2 days)

The importance of this section is that it demonstrates

to the students groups that have the same structure.

O

~A
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Isomorphism provides a means of studylng the propertiles and

proving provositions about unknown groups by examining the

properties of known groups which are isomorphic to the unknown

group .

2.12 Exerclses

Exercises 1, 3 (d), and 4, should be demonstrated in

class snd the remaining exercises may be handled according

to the teacher's discretion.
f

1. To show that n ——— 3" 1is 1-1 from the group (Z,+) into

the group (Q \ {0},0) we must show that f is defined on

Z, which it is, and that if f(x) = f(y) then x = y. In

other word, that if 3* = 3Y then x = y. An argument for

this may be, if we assume

3x
37 =

¥, 37V =
3¥x-Y

¥V -

X -y =

X =

that 3% = 1 if and only if z = O,

3y
3"y

Assumption

Reflexivity

3¥.3"Y  Right multiplication

= 3°

1
)

y

For all real numbers,

a and b,
3a.3b = 3& + b

Replacement 3° = 1
Assumption above

Right addition

(Z,+) and {Q\{0},*) are not isomorphic groups as no ele-—

ment of Z maps onto 2 of Q. ¥For isomorphic groups the mapping

must be onto, f 1s not onto.

5
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Studerts may use other elements of Q to show that the
mapping is not onto.
2. (a) The mapping f from Z, to {e,x,v]}
0

e

l——x

2

y

is 1-1 and onto. If the operation + 1s also

replaced by o, the two tables become identical,

+ o 1 2 o e x

o 0o 1 2 e e xX y
1 1 2 O X X y e
2 2 0 1 y | ¥y e x

(v) Use the mapping shown to display the isomorphism

that converts one table into the other.

0 A {a} = {p} ~ {a,b]

e e x y z {1 (1 fa} (b} ({a,b}

x | x e z vy () | (a} {1} fa,p} ()

y |y z e x (b} | (v} {a,p} {1} (&)

z z y x e {a,bl|{a,p} (b} (a}l {1

0 - 0 e —— {1 x {a} vy {v}
z {a,b}

f

(¢) Let f be defined by n 3® for n in Z. Every
n in 7 has an image namely 3°. Every 32 has a pre-
image, namely a. In exercise 1, we showed that f

is 1-1. Hence, f is 1-1 and onto from Z to

o



(2)

()
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{3n: n in 2}, We must show that f preserves proc-

ducts: that is, for cvery x in Z and y in 2

f(x +y) = £(x) - £(y),
or equivalently that

P - 3F .3y
which 1s the case. (This may be proved by mathema-
tical induction. At this level we assume this law
for exponents.) It now follows, as (Z,+) is a
group, that ({3n: n in 21},*) 1is also a group, for
every property possessed by (Z,+) is imaged by an
analogous property in ({3": n in 2}, ).

It is an operational system: 3%.3Y = Y por

all x, y In Z.
(3¥.39) . 3% - Y 32 _ 3(x+y)+z _ 3x+(y+z)

= 3%.3(y+z) _ 3%, (3Y.3%)
so that we have associativity.
30,3% _ 3o+x = 3¥ = 3x+o = 3¥.3°
for each x in Z, 53 that 3° serves as the identity
element. The inverse of 3% is 3™ vbecause
2¥.37%¥ 2 39 ang 37%.3% - 30,
As Z, has 4 eiements and Z, has 5, there can be no
1-1 mapping from 2, onto Z,. There must be a 1-1
onto mapping between the sets of isomorphic groups.
(Zg,+) can be generated by the single element 1:
1=1, 1+1=2, 1+2=23, 1+3=4,
1+U4=5,1+5=0,

.{:‘_t'{l
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{¢,p,q9,r,s,t} has no element ccrresponding to 1.
Hence, there is no mappirg (1-1, onto) that pre-
serves products.

(c) Each element of one group (the Klein 4 group) is
its own inverse. This is rot the case for the
other group. Hence, there 1s no 1~1 onto mapping
that preserves products.

() Suppose (Q,+) and (Z,+) were isomorphic groups.
Let f be an isomorphism between them with Q the
domain and Z the range. Let the pre-image of 1 in

Z ve a so that f(a) = 1. Then

1 =rf(a)
Note: If a 1s in @
= £(2 2
=£(3) + £(3) then £ 1s 1n Q.
= . p(2
=2 - £(3)

Therefore, f(%) ='%.

But f maps Q onto Z so that all images must be

a
2

integer, for its image under f, Thié contradiction

integers. is in Q and has'%y which i3 not an
shows that there is no isomorphism between (Q,+)
and (Z,+) so that they cannot be isomorphic groups.

L, (a) Order of (2,,+, is 4.

Order of O is 1.

Order of 1 is 4.

Order of 2 is 2,

Order of 3 is 4,

i
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(b) Order of (Z,,+) is 5. Order of each element (except

0) is also 5. Order of O is 1.
(c) Order of (Z,,+) is €. Order of 0 is 1. Order of 1

is 6, Order of 2 is 3, of 3 is 2, of 4 is 3, of 5 is 6.
(d¢) Order of (Z,,+) and each element (except O) is 7.

2.14 Exercigses (Time: 1 - 2 days)

Exercise 8 may be assigned for homework and a lesson built
around this exercise can be developed the following day. Since
there are many approaches and valid methods of proviag cxercise
8, the students should be encouraged to provide different proofs.

Before . beginning exercise 10, the teacher should review
the definition of an equivalence relation, presented in Course I.

If time permits, exercise 11 may be discussed in class.
However, because of its degree of difficulty, it should not be
assigned for homework.

1. (a) and (v) are grougs. (c) and (d) are not groups.

2. 5'.01'120.
3, (a) (123w T _ /12 34
2 4 1 3 31 4 2
() /1 2 3 4 o<123u>=(123h>
2 4 1 3 2 3 4 1 31 2 4
h, (a) 9 (v) 6 (c) 2

5' ({O?’+), ({O’h}’-l-)’ ([0’2’1"’6}’-‘-)’ ({0’1’2’3,1’.”5’6’7’83’4-)'

Yes.

9
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6. Solution Set
(a) {s}
(b) {r}
(&) tr)
(d) 12 3 4
(132&)
7. Let the isomorphism f from (2,,+) to (2,\ {0},*) be
0——1 (=3°)
1 .3 (=3%)
2 2 (=3%)
3 ——6 (=3%)
4 4 (=3%)
5 —5 (=3°)
+ 101 2 3 4 5 1 32 6 4 5
o012 3145 1132645
1123450 30326451
2123145001 2 |2 614 51 3
31345001 2 6|6 45132
b a5 01 23 b 451326
5 5 012 3 4 5 5132 6 4
1

z If the symbols +, O, 1, 2, 3, 4, 5 are replaced, maintaining
i order, by °*, 1, 3, 2, 6, 4 the first table becomes identical
with the second. Hence, (Z,4,+) and (2,\ {0}, *) are iso-

morphic.

8. (aox)ob=c Assumption

")
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e—=1(a o x) obto bL = ¢ o b Right multiplication
t—— (a0 x)o (bo bI) =c o bt Associativity
—(aox)oe =c o b’ Definition of br
t—(a o x) = ¢ o bl Definition of e
—=al o (a o x) = al o (c o bI)

Left multiplication

'ﬁ::::>(a1 0a)ox =al o (c o bl)

Associativity

) e o x al o (¢ o bI)

Definition of al

—=x a.Io(cobI)

Definition of e

it

Hence if there is a solution, it must be a

al o (c o bI). Moreover, it is a solution as

a o {aI o (c o bI)} ob=(ao aI) oco (bI o b)

=eQgcoe

= C.
9. f(a o bI)I = (bI)I o al Theorem 8
=b o aI Theorem 7

10. It is not an equivalence relation., It is reflexive and

D T e e L U

transitive, but not symmetric.

11, (yoa)ox=yo0 (aox)

R Y

eo0oX=yo0e
X =Y.

Thus a o x = e and x 0 a = e; that is, every & has an

I
i
£
i
EX

inverse element, the only property remaining tc complete

"1




;
H
3
1
¢
|
b
b
t
1
f
H
1
{

II.
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the group structure.

Suggested Test on Groups

(P, #) 1s an operational system that is assoclative. Its

table 1s given below. Answer all questions with regard

to the table for (P, #).

* a |bf{ec|d (a) The identity element
a claltalo for thils system is
I_
b al|lbv]lc|a (v) aI = .
c dlec|bv|a b = .
. CI-
d b d 8, (¢] T c—— .
dI -

(¢) Is (P, #) a commutative system?

(a) Is (P, *) a group?

(e) If P is not a group, explain why. If P is a group,
1ist one of the following cholces as a subgroup of
P: ({a,b}, #), ({v,c}, *), ({a,d}, #).

(f) Answer each by writing a single element:

d2= a3= bsé

Compute to show one permutation for each problem:

(1 2 3 4) (1 2 3 4)

(2) 32 14/ ° \2 31 &
(1 2 3 4\

(v) Find the inverse of 3 1 1 2) =
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1 2 3 4 o o
() IfX= {, 3 1 4 find X°. X° =

(d) How many permutations can be made with the elements

of the set (1,2,3,4,5)?

>n+3

III. Consider the meppings: .flz n
fa¢ N ——=-n
Compute the following within the set, Z:

(2) £,{0) = (c) £,(£5(5))

(e) fa(-4) = (d) £4(£,(5))

IV. Consider the groups of (2,, +) and (R, o).
R = ({a,b,c} and the operational table is:

(a) Are these two groups isomorphic?

(b) If your answer to "a" is yes, show why they are
(exhibit the mapping and compare the operational

tableé). If your answer to "b" is no, show why not.
V. Fill in the proper reasons for the following proof of

Left Cancellation in a group (S, o).

Theorem: Ifc oa=c ob, then a =D,

"9
DL
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Statement Reagon
1. co0oa = co0b 1,
2, ofo (coa) = el o (c o b) 2.
3. (cI oc)oa = (cI oc)ob 3.
L, eoa = eo0b L,
50 & = b 5.
VI. Prove:
II I
() (aoDbv™)” = boa for a,b in a group
Statement Reason
1' 1'

(b) Prove Right Operation in any group (S,o0). Theoren:

If a=b, thenaoc=D>o0c,

A
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Answers for Suggested Test of Groups

I. (a) b (v)
(¢) vyes
(d) yes
(e) ({b,cl, #)
(£) a2 =c¢;ad=a; b8 =1
| 1 2 3 4
II. (a) \1 3 2 & (v)
() 5 1 2 3 4 (d)
=131 2 &
IITI, (a) 3 (v)
(e) -2 (a)
i Iv. (a) yes

E (b) There are 2 possible mappings.

o
=

o
=

s 0
o T

1) o + +

¢ ) o

| a 1 1
b 2 2

®
®
o
o

M » oo
o v r|m
P o M|
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2) o - + + o 1 2 o c b a
¢ ——0 0 ¢} 1l 2 ¢ b a
b ——1 1 1l 2y 0 b b a ¢
a 2 2 2 0O 1 a a ¢ b
v. Statement Reason
l. coa=cob 1. Given (or Hypothesis)
2. clo (¢ 0 a) = el o (¢ 6 b) 2. Left operation theorem
3. (cI oc)oas= (cI oc)obd 3. Assoclativity of (S,0)
y, eocoa=e0b 4, Definition of dI or
inverse property of (S,0)
Ye as=»>» 5. Definltion of e
' or identity property
of (8S,0)
VI. (a) Statement Reason
1. (ao bI)I = (bI)I o al 1, Theorem 8
2. = bo aI 2. Theorem 7

Students may elect to prove theorem 8 in this problen.
But the use of the theorem is sufficient. Such a proof

would require too much time in a one period test.

(b) statement Reason

1. a=2> 1. By assumption

2. ao0oc=8ao0¢ 2. Equality is reflexive

3. aoc=Dboc 3. Substitution principle
of equality (a = b).
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Chapter 3
Affine Geometry
Time Estimate for Chapter: 18 - 21 days

The main objectives of the chapter are to:

introduce the student to an axiomatic affine geometry
based on two incldence axioms and the Playfair version
of the Euclidean parallel axiom.

prove theorems formally within this system and strengthen
the notion of proof.

show that this axiomatic system can be given varied and
sometimes unusual interpretations, whereby introducing
the student to the notion of a model.

exhibit and analyze various finite and infinite models
which despite their differences must nevertheless possess
ali the properties expressed by the axioms and theorems
of our axiomatic geometry.

introduce the basic notion of parallel proJjection on

which the idea of a coordinate system for the plane
depends.

introcduce the student to the concept of a vector.

General Remarks

Many of the exercises call for proofs of theorems. These

should ve regarded as a continuation of the content sectlons.

Ko
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They are used in subsequent proofs and applications.

No special form or arrangement of proofs should be
demanded of the students. Proofs presented in paragraph
form ~hould be completely acceptable iIf the reasoning 1is
correct. The test of correctness is, of course, that each
assertion made in a proof follow loglcally from the axions
and/or theorems previously deduced from the axioms.

Teachers should be careful to avold discouraging the
student when he submits & proof that is not correct. He should
be praised for those parts of the proof that are sound, It
takes time for a beginner to understand or appreciate the
idea that he may use'only properties of points, lines, etec,
which he can deduce logically from the axioms and that he must
avold drawing conclusions which are based upon the appearance
of a diagram,

If a student's proof or solution to a problem differs from
yours (or ours) do not assume that he is wrong. Have him
explain because his answer may also be correct. Originality
and creativity is a precious commodity to be nurtured and

encouraged ~ not suppressed.

3.2 Axioms (And .1 Time: 1 1/2 - 2 days)

Stress that the plane T is a sét of points and that lines
are subsets of T, The set T and its subsets, the lines, are
assumed to have certain properties which are expressed in the

axloms.

i)
O iy R
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The students should learn to state the axioms accurately,

In connection with the definition of parallel lines, be
sure the studants understand that every line is considered
parallel to itself in this context., Here is a good opportunity
to point out that definitions are man-made to serve some
purpose, In the present case defining a line to be parallel
to itself makes it possible to state axiom 3 and certain
subsequent theorems simply, without awkward exceptions,

In connection with the term "effine geometry", stress

that this is a geometr& in which our Axioms 1, 2, and 3 hold.

3.3 Exercises

The purpose of these exercises 1s to clarify and sharpen
the student's understanding of what the axioms assert as well
as what they do not assert.

Exercise 3 affords an opportunity to point out that the
axioms are "incomplete" in the sense that there are questions
which cannot be decided one wey or the other on the basis of
Just these three sxlioms. This point will become clearer
when models are'studied later, Thus, further axioms will have
to be Introduced later in order that the system of geometry

chell have the properties we feel it should possess.

"9
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Exercise U4 {1lustrates that although a property maey not’
be specifically assumed by any one of the axioms, it may be

implied by several of them taken together, Thus the deduction

of theorems from the axioms is anticipated by this exercise,

In Exercise 8, the siudents may recall that m(AUB) =
m(A) + m(B) - m{AnNB). This sheds further light on the
guestion raised there.

Question 10 anticipates the proof of one of the theorems
in a later section. Do not require all students to do this

probl.m at this time.

3.3 (Solutions to Exercises)

| 1. a) Yes. According t Definition 1, line M is considered
E parallel to line N even when M = N, i.e., when M
"coincides" with N. In this case M and N have all
their points in common.

b) Yes.
2. Yes., Line m itself certainly contains E and is parallel

to itself,
None. (Moreover, neither do they assert that a line

w

may not contaln three points, This question is left

open by the axioms.)

T R e A e e
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No one of the axioms asserts this fact. (However

it can be deduced from the 3 axioms. This 1is done
later. See No.10 Sect. 3.5)

Axiom 1b, (A set that contains at least two points
certainly contains at least one point.)

Axiom 2

None. (Eggg: Axiom 2 implies that there cannot be
more than one such point, but none of the axioms
guarantees that there must be such a point.)

Axiom 1 guarantees that each line contains at least
two distinct points but it does not guarantee that
the points in one line must be distinct from the
points in another line. If a set A contains two
members it does not follow that AUB contalns four
members because A and B may share members in common,
Two distinct lines cannot intersect in more than one
point because axjiom 2 guarantees that only one line
can‘contain two distinct points.

By axiom la, 7 contains at least two lines; call
them m and n. By axiom 1b m contains at least two
pointsj call them A and B, Line n also contains two
points (by axiom 1b). At least one of these two
points must be different from either A or B, because
axiom 2 stipulates that there is only one line
containing A and B, namely m. Since n is not the
same line as m, at least one of its points, call it

C, must be different from either A or B, Hence there

&1
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are at least three distinct points, namely, A, B,
and C in plane T,

3.4 Some Logical Consequences of the Axioms (Time: 3 - 4 days)

This section introduces the first few theorems and
definitions involving incldence properties of lines and planes,
The proofs are presented in considerable detail and should be
very carefully discussed in class. The role played by each
axiom (or part of an axiom) should be clearly understood.
Notice that axiom 3 (the Euclidean axiom) is not used in
either of the proofs so Theorems 1 and 2 are strictly incidence
theorems. Subsequent theorems which also require axiom 3 are
affine theorems.

Be sure the student understands the meaning of the terms

collinear, non-collinear, concurrent and non-concurrent.

One suggestion for this section is to ask students to
rewrite the proofs of Theorems 1 and 2 in a "two-column" form,

as an assignment.

3.5 Exercises

Skill in constructing proofs takes time to acquire. Hence

the first two exercises (Theorems 3 and U4) supply most of the
proof and the student 1s merely asked to supply reasons.

Let the student work on each of these exercises by himself
elther in class or via a homework assignment.' Then have various
Q

(S
( £
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students present thelr proofs for discussion, criticism, and

correction of errors. A Special section in each student's

notebook might be reserved for listing the theorems, each

accompanied by & correct proof,

Allow various types of proofs, as noted under "General

" Remarks" at the beginning of the Commentary for this Chapter;

encourage indirect, as well as direct proofs.

Allow variations in wording of the proofs so long as
the reasoning is correct. Also, in proving & theorem stress
use of previously proved theorems, This wili make for still
further variation in correct (and incorrect) proofs submitted
by students. Scrutiny of such alternate proofs to check their
valldity is one of the best ways for a student to grow in
mathematical maturity.

The students will probebly find Exercise 7 quite difficult
at this stage and Exercises 9 and 10 very hard. Nevertheless
let them try them., All these theorems should be included in
each student's 1iét with proofs supplied by the better

students, or by the teacher if necessary.

3.5 (Solutions to Exercises)

1. (1) axiom 1a
(2) axiom 1b
(3) axiom 2

2, (1) By axiom 1la
(2) By axiom 1b
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(3)- If B and C were the same point then by axiom 2,
m and n would be the same line (because m and n
also contain point A),

(4) By Axiom 2.

(5) By an axiom, m is the only line containing both
A and B and n is the only line containing both A
and C, 'The 3rd line cannot contain A, since if
it did, m and n would not be distinct lines.

(Theorem 5)

If A is a point in plane T, there are at least two

~lines in 7, each containing point A.

Proof: By Theorem 4, there is a line, say m in T which
does not contein A, By axiom 1lb, m contalins at least
two points B and C. By axiom 2, there is & line r
conteining A and B and there is also a line s containing
A and C, such that r # s. (Since if r were equal to s,
B and C would be in r, in s, and in m, so that by
Axiom 2, r =s =m, Then A € m. But this contradicts
the first statement.) Therefore r and s are the
required lines, |

(Theorem 6)

There are at least three non concurrent lines in the
Plane T,

Proof: By Theorem 2 there are at least three points in
plane T, not all in the same line. Call these points
A, B, C. By Theorem 5 there must be at least two

lines m and n each containing A. By axiom 2 there is

a4
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a line ¢ containing points B and C. This line ¢ cannot
also contain A because A, B, and C are non-collinear.
Henze this line ¢ must be distinct from lines m and n.
By axiom 2, m and n cannot both contain a common point
other than A, and since ¢ does contain A, z; m, n are
not concurrent.

(Theorem T7)

If each of two lines in 7 is parallel to the same line
in 7, then they are parallel to each other.

Proof: If m || s and n || s by hypothesis, we must prove
m || n. Supposem ffn. Thenm # n, and m N n contains
exactly one point, say A. (Def. of || lines.) Hence

A €mn (where m || 8), and A € n (where n || 8). Since
we already have m # n, we have a contradiction to axiom
3, which says that there is one and only one line con-
taining a given point and || to a given line. Hence

m || n.

(Theorem 8)

If m 1s any line in 7, then there are at leasf 2 points
in 7 which are not in m.

Proof: If m is in 7, by Thoorem 1, there is a point in
T, 88y A, not in m. By axiom 3, there is a line, r,
containing A and || m. By axiom ib, r contains at least
2 points, A and some other point C. This point C £ m,
since 1if C € m, then m f r. But that would contradict
the fact that r || m. Hence A and C are the required

g



points.
We include here two proofs for Exercise 7.

(Theorem 9)

If A is any point in plane 7, then there are at least
two lines in 7 which do not contain A.

1st Proof: If A is any point in plane 7 then by Theorem
5, there are at least two lines in 7 each containing
point A. Call these lines m and n. By axiom 1b each
of the lines m and n contains an additional point dis-
tinet from A, Call these points B and C, respectively.
B and C must be distinct points because otherwise (if
B = C) m and n would both contain the distinct points
A and B, and by axiom 2, m and n would not be distinct
lines. Since B and C are distinct points, there exists

a line ¢ in 7 containing B and C (axiom 2).

Moreover, by axiom 3, there exists a line r in 7 con-
taining B, and parallel to n.

Neither r nor g containss A because: (1) if r con-
tained A then r = n {by axiom 3) and since r also con-
tains B, then r = m (by axiom 2) and hence m = n con-

tradicting m # n; (2) similarly, if 2 contained A,

B
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then since ¢ contains B, 2 = m (by axiom 2) and since
4 contains C, g = n (by axiom 2) from which once again
m = n, a contradiction. Finally, to prove that r and

4 are distinct lines we observe first, that ¢ # n

(because n contains A while g does not) and second,

that ¢ and n both contain C. Therefore g J n, while

on the other hand r || n. Consequently g # r.
7. (Theorem 9)

If A is any point in plane 7, then there are at least

two lines in 7 which do not contain A,

2nd Proof: If A is any point ir 7 then, by Theorem 4,

there is a line in 7 which does not contain A; call this
b line line m. By axiom 1b, m contains at least two points,
call them B and C. By axiom 3, there is a 1line in 7
which contains A and is parallel to m, call this new

line n., By exlom 1lb, there is a point in n

- Q.

other than A; call this new point D. By axiom 2, there
is a line in 7w containing B and D, call this line s.
We shall now prove that m and s are twe (distinct) lines

that do not contain A.
Q Sv?
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First of all m was chosen so as not to contain A,
Secondly, if s contained A, then since s also contains
D, it would follow (by axiom 2) that s = n, and hence
n would contain B (because s contained B). Then since
n || m it would follow, by axiom 3, that n = m and thus
m would also contain A (because m contained A)..

This contradicts the fact that m was chosen not to con-
tain A. This contradiction proves that s cannot con-
tain A. Finally, tp prove that m and s are distinct
lines we observe that if m = s, then m would contain
D (because s contains D) and since n || m, and n also
contains D, it would follow from axiom 3 that n = m.
But this would mean that m and n are not distinct
lines, and that would contradiet the fact that m was
chosen to be distinct from n. Hence m and s are the
required lines.

We include here two proofs for Exercise 8 - one is a
direct proof and the other an indirect proof.

(Theorem 10)

If 4, m and n are lines in 7 such that m is parallel to
to n, then if g is not parallel to m, it follows that
2 is not parallel to n.

18t Proof: Since g 1s not parallel to m, it follows
that ¢ and m are distinct 1ihes and contain a common
point, say A. Since ﬁ is parallel to n, it follows
by axiom 3 that

88
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any other line containing A cannot also be parallel to
n. Hence £ is not parallel to n.

(Theorem 10)

2nd Proof: £, m, n are lines in 7 such that m || n,
Assume £ ] mand £ n. We know £ #n, since £ /| m
and n || m. Further if £ § m, then £ # m and £ and m
intersect in some point, call it A. But this contra-
dicts axiom 3 since both £ and m would contain A and
be || to n. Hence our assumption is false and £ A n.
(Theorem 11)

If 2 is any 1line in plane 7 and A is any point in 7
which is not in line %4, then there is a one-to-one
correspondence between the set of all points in £ and
fhe set of all lines in 7 which contain A and are not

parallel to 4,
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Proof: In order to establish the one-to-one corres-
pondence, we must "match" each point of 4 with a unique
line conteining A but not parallel to 4, and co. ‘ersely

we must match each such line with a corresponding unique

point of . ' "
/ ¥
(1) Let X ve any point € 3. /
Since A is not in ¢, A and X /A'
are distinct points. Hence , r/
' K

by axiom 2 there is one and
only one line in 7, call it m., which contains both A
and X. Thus, to each point X in 4 there corresponds
a unique line m, which contains A and is not parallel

to t(because it contains a point of ¢, nemely X).

(2) Conversely, let m be any W
line containing A and not paral— \\.' A
lel to 4. Since m 1s not paral- \
lel to 4, m contains at least \\
one point of g4, Moreover K.T\

by Theorem 3 there 1s only one such point because m is‘
distinct from # (since m contains A while ¢ does not).
Hence to each line m which contains A and is not paral-
lel to ¢ there corresponds a unique point xm in ¢.

This cdmpletes the proof.

(Theorem 12)

If A is any point in plane w, then there are at least
three digtinct lines in 7 each containing A.

a9
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Proof: 1If A is any point in
m, then by Theorem 5 there are
at least two (distinet) lines
in 7 which contain A call

these distinct lines m and n.
e\’
By axiom 1b m and n each contain //ﬂs\ \

a point distinet from A: call these points B and C,

respectively. B and C are distinct points because
otherwise (if B = C) m and n would both contain the
distinct points A and B and then, by axiom 2, m and

n would not be distinct lines. Since B and C are dis-
tinct points, there is & line r in w, which contains
both B and C. r does not contain A because if it did,
then since r contains B we would have r = m (by axiom

2) and since r contains G we would have r = n...(by

axiom 2 again.. Therefore we would have m = n con-
tradicting the distinctness of m and n. Now by axiom

: 3, there exists in 7 a line s which contains point A

5 and is parallel to r. This line s is distinct from

both m and n because each of these linea is not paral-
lel to r (each contains a point in r as well as a point A
not in R) while s is parallel to r. Hence s, m and n

are three distinect lines in 7, each containing A.

3.6 A Non-Geometric Model of the Axioms (Time: 1-% - 2 days)

The example given here has been constructed with great

1
LR
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care. It describes a "non-mathematical" situation which ¢
actually turns out to be startlingly mathematical! As the
student studies the models in this section and in the next
two sections, he should galn a deeper understanding of the
power and value of abstraction in mathematics. Some of ghe
models in this section and section 3.8 may be omitted with

a good class.

3.7 Exercises

All of the exercises in this section should be covered.
Exercises 1 - 8 give excellent practice in interpreting and
in applying the theorems of our axiomatic geometry to the
commando squad model. Exercise 9(a) (Theorem 13) should be
added to the students notebook list, along with a correct
proof. Exercise 9(b) throws furfher:light on the two pre-

ceding exercises.

3.7 (Solutions to Exercises)

1. Théorem 1 translates into: For each team in the com-~-
mendo squad, there is at least one commando who' does
not belong to that team. ([This can be re-phrased: No
team includes all of the squad.]

Theorem 2 translates into: There are at least three .
commandos in the commando squad who do not belong to

the same team.

D
)
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Theorem 4 translates into: For each commando in the
commando squad there is a team to which he does not
belong. ([This is equivalent to: no commando belongs

to all the teams.) |

No. Theorem 6 asserts that there exist at least three
lines in 7 which do not contain a common point. This
translates Into: There exist at least three teams in
the commendo squad which do not have a commando in com=-
mon. |

Theorem 8 translates into: For each team in the commando
squad. there are at least two commandos in the squad who
are not on that team.

Interpreting Theorem 10 we obtain the following: If

L, m and n are teams in the commando squad such that

m has no commando in common with n, then if ¢ has a
commendo in common with m it follows that ¢ has a com-

mando in common with n.

Theorem 11 translates as follows: If ¢ is any team in

the commando squad and if A is any commando who is not
& member of team g, then there is a one-to-one corres-
pondence between the set of all commandos in £ and the
set of all teams which contain A and also contain & mem-
ber of .

Now these teams, each of which contains A along with
one member of team f, are distinct teems (because A is

not a member of p). Since there is one such team for

o3
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each-member of ¢, the number of these teams must be the
the same as the number of commandos in 4. However,
there is one more team containing A, in addition to
these teams, namely the "pafallel" team (guaranteed
by axiom 3) which contains A but does not contain

any members of g. Thus there is actually one more
team containing A than there ave commandos in ¢.

Note: In this argument, A can be any commando in the
squad, because for each such man, Theorem 4 guarantees
that there is always at least one team to which he
does not belong (see Exercise 2 above).

Requirements la, 1b and 2 are satisfied. Requirement
3 1is not satisfied because no two of the teams are com=-
pletely distinct. Every pair of two teams has a com-
msndo in common. |

The following six teams will f£1ll the bill:

Team 1: {Jones, Kelly}

Team 2: {Jones, Levy}

Team 3: {Jones, Mason}

Team 4: {Kell#, Levy}

Team 5¢ ({Kelly, Mason}

Team 6: ({Levy, Mason}

(a) (Theorem 13) |

There are at least foﬁr points in plane 7, no three of
which are collinear.

Proof: By Theorem 2, there are at least three

Q4
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non-collinear points in plane 7, call them A, B, C.
By axiom 2 there is a line m in 7, containing points

A and B and a line r, in 7, gontaining points B and C.

jmu a¥

m # r because A, B, C are non- AN
collinear. By axiom 3, there Vi b
is a 1ine‘z, in 7, containing

A such that ¢ || r and there is

& line n in m, containing C such

—a
that n || m. Now m and r are dis- /B c

tinct lines containing point B. Hence certainly m ) r
and therefore m # 4 (because ¢ || r). But m and ¢ both
contain point A, hence z'ﬂ m. But m | n, so it follows
from Theorem 10, that ¢ f n, i.e., ¢ and n both contain
a (unique) point D in .

A, D, and C are non-collirnear since A and D are on ¢,
2|l r, and C is on r. Since m # 4 (proved above) it
19llows that D, A and B are non-collinear. Since

njf ¢ vut ¢ || r, it follows, by Theorem 10, that

n f r. Consequently D, B and C are non-collinear.

Thus the four points A, B, C, D have the property that
no three are collinear.

(b) Theorem 13 proves that every model which satisfies
the requirements of axioms 1, 2 and 3 must contain at
least four "points".

Since the commando squad of Exercise 7 contains only

three "points" (i.e., commandos) it cannot satisfy all

a5



N L T P _

- 93 -

requirements. Observe also that the existence of a
fourth point depended on axiom 3 so evidently the third
requirement fails to hold for this model. |

In Exercise 8, the commando squad consists of exactly
four men. The addition of a fourth "point" makes it
possible to fulfill the requirements but only byl
organizing the teams ("lines") so that no three com-
mandos (points) are on the same team (no three points

are collinear).

3.8 Other Models of the Axioms - Finite and Infinite
[Time: 3 - I days)

This section explores models in greater depth. It
introduces four-point and nine-point geometries along with
interesting interpretations of these finlte geometries.

Tt also presents an infinite model in which the student
begins to get a preliminary glimpse of "analytic geometry".
However the "plane" defined here is still a far cry from the

real euclidean plane of ordinary analytic geometry.

3.9 Exercises

Exercises 1 - 10 provide further experiences in setting
up models, interpreting the theorems and applying them to
these models. Exercise 11(a) (Theorem 14) should be added
to the student's notebook list of theorems and proofs.

Froblem 9c¢ should be starred and can be done better when
o8
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studying Chapter 6.

3.9 (Solutions to Exercises)

1. (a) Assignment of Players to Tennis Matches
Match Players Assigned
No. 1 Al, Bill
No, 2 Al, Carl
Nol 3 Al, Don
No. 4 Bill, Carl
No. 5 Bill, Don
No. 6 Carl, Don
(b) Using his first initial to name each player we

(e)

have the following model:
Pioneer Club: {A, B, D, C}

Doubles Teams: {A,B}, {A,C}, §A,D}, {B,C}, (B,D},

{C,D}
Tennis Players: A, B, C, D

Pioneer Club

This is a four-point geometry with plane P

line doubles team

point

tennis player
Axiom 1(a) translates into: '

The Pibneer Club is a set of tennis players and it
contains at least two doubles teams.

Axiom 1(b) translates into:

"Each doubles team in the Pioneer Club is a set

of at least two tennis players.”

S\
oy
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Axiom 2 translates into:
"For every two tennis players in the Pioneer Club,
there 1s one and only one doubles team in the Pio-

neer Club containing these two tennis players."

Before translating axiom 3, define "parallel"
doublés teams to mean teams that are either iden-
tical or completely distinct (disjoint). Axiom 3
then translates into:

For every doubles team m and tennis player E in

the Pioneer Club, there is one and only one doubles
team in the Pioneer Club containing E and parallel

to m.

A glance at the model in (a} or (b) shows that the

axioms are satisfied.

(d) (1) parallel lines = doubles teams that have
no tennis player in common or are iden-
tical.

(2) collinear points = a set of tennis
players all on the same doubles tean.
(3) non-collinear points = a set of tennis
players not all on the same doubles team.
(4) concurrent lines = distinct doubles teams
which have a tennis player in common.
Note: In this particular model there are three pairs of

parallel doubles teams, any two tennis players are collinear,

a8
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but three of more tennls players are non-collinear and

there are four sets of concurrent lines.

(e)

(£)

(v)

Theorem 1 translates into:
For each doubles team in the Pioneer Club there
is a tennis player in the Pioneer Club who 1is not

on that teanm.

Theorem 2 translates into:
There are at least three tennis players in the
Pioneer Club who are not all on the same doubles

teanm.

Theorem 3 translates into:
Two distinct doubles teams cannot have more than

one tennis player in ccmmon.

Therrems 2 and 3 are trivial because a doubles
team consists of exactly two tennis players.
Theorem 5 asserts that each point is contained in
at least two distinct lines (hence each player will
participate in at least two matches). Theorem 9
asserts that for each point there are at least two
lines which do not contain A (hence for each player
there will be at least two matches in which he will
not participate).

Yes; yes, no

No. Every two distinct lines have a point in com-

mon.

99
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(a)

(b)
(a)
(v)
(e)

(d)
(e)
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non-collinear
Theorem 1: valid
Theorem 3: valid Depend only on axioms 1 and 2

Theorem 5: valid
Theorem 8: not valid

Depend on axiom 3
Theorem 9: not valid

Theorem 1 valid (in the vacuous sense that there
are no parallel lines)

Plane r: {A,B}

Line : {A,B}) (note: only one line)
Points : A,B

Axiom la is not satisfied.

Axiom 1b is satisfied.

Axiom 2 is satisfied.

Axiom 3 is obviously satisfied because plane 7 does not
contain a line and a point not on that line and
the only case 1s when the point is on the line.

See proof of Theorem 13 (Exercise 9(a) in section 4.7)
There are actually 10 lines.

Each line contalns exactly 2 points.

(1) not parallel

(2) not parallel

(3) parallel

(4) parallel

yes

no., For example, there are two lines containing

point C, namely {A,C} and {B,C}, both of which are

s A

gt

e e 10 et i o S
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parallel to line {D,E}.
(£) Two.
5. Any four-point model (e.g. the tennis club model of
exercise 1 above) shows this.

6. (a) Points in plane 7w (0,0), (0,1), (1,0), (1,1).

(b) y

(a9 < (,0)
oy Ga "
E (¢) Equations of lines in 7 are:

;' 2, 1x + Oy = 0
» 245 Ox + 1y =0
§ L3¢ 1x + 0y =1
: 2,0 Ox +1ly =1
; g0 1x + 1y =0
l’ gt X+ 1ly =1

(d) Lines which correspond are:

¢ {(0,0), (0,1))

2.+ {(0,0), (1,0)}

25: {(1,0), (1,1

2t {(0,1), (1,10

45+ {(0,0), (1,1)} Note: 1+1=0
24+ {(1,0), (0,1)}
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(e)

P4 \\,-
< |

(o9) X ?i.) g3
7. (a) Points: (0,0), (0,1), (0,2)
. (1,0), (1,1), (1,2)
| (2,0), (2,1), (2,2)
®) eyl () o)

(gb /“a') /(3.09
/

[

(o ""d?) (1.).)

(c) 2,: 1x+0y=0 (d) 2, = {(0,0), (0,1), (0,2)]
Lg: 1x +Cy =1 £, = ((1,0), {1,1), (1,2)]

Lot 1X + Oy = 2 1y = {(2,0), (2,1), (2,2)}

L,: OX +1ly =0 2, = {(0,0), (1,0), (2,0)}

Lg: OX +1ly =1 4s = ((0,1), (1,1), (2,1)]

: te: Ox + 1y =2 te = ((,2), (1L,2), (2,2))
Ly: 1x +1ly =0 Ly = {(1,2), (2,1), (0,0))}

Lg: 1x + 1y =1 e = ((1,0), (0,1), (2,2)}

Lo: 1x + 1y =2 %o = ((1,1), (2,0), (0,2)]

Lig: 2x+1ly =0 430 = ((0,0), (1,1), (2,2)]
L8 2x +1ly =1 22 = ((0,1), (1,2), (2,0))

fy9: 2X + 1y = 2 833 = ((0,2), (1,0), (2,1)]
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There are 12 more equations but they are equivalent to

the above equations. Multiply each equation by 2 and you

will get these equivalent ones.

| (e)

i 6 (2,3)

! \><;,/" i -
‘ AN N u)/}.f

f L - - :\4\

; I >
e S Lo TR
L9 (2,0) 0,9 (2,9

Note: The open circles don't represent new points. Each

open circle represents the same point as the

corresponcingly labelled heavy dot. This diagram
is a slight variation of Figure 14 in the text with

a more symmetrical placement of the open circles.

R

(a) 1x + Oy = 0: solution set: all ordered pairs of the

Y
&

form (0,y)

Ox + 1y = 0: solution set: all ordered pairs of the

form (x,0)

These two "lines" represent the y-axis and x-axis

respectively. The "plane" 7 = Z x Z certalnly

contains both these "linés", i.e., both solution sets.
(b) There are many points that can be used to show this.

(1) x -y =0: solution set contains the "points"

(0, 0) and (1, 1)




(c)

(2)

(3)

(4)

(1)
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X +y =2: solution set contains the "points"
(0, 2) and (2, 0) |
2x - y = 0: solution set contains the "points"
(0, 0) and (1, 2)
3x + 4y = 5: solution set contains the "points"
(3, -1), and (-1, 2)
We first seek an equation of the form

ax + by = ¢
where a, b, ¢ are 3 .tegers and a, b are not both
zero, and such that (0, 0) and (1, 1) are both
in the solution set. Substituting (0, 0) for
(x, y) Wwe obtain O = c. Substituting (1, 1)
for (x, y) we obtain

a+b=2c
Hence & + Db =20

SH 8 = =b

Hence any equation of the form ax - ay = O where
a # 0 will fill the bill. Furthermore all
equations of this form are equivalent to the
simpler equation

X -y=0
i.e., they all have the same solution set namely
((0,0), (1,1), (-1,-1), (2,2;, (-2,-2)...}
Thig solution set represents the unique "line"

determined by the two points (0, 0), and (1, 1)

1“.\
i
.,'

i
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(2) For the points (4, -1) and (2, 0) we obtain
Ha. - b =¢
2a = C
& Hda - Db = 2a

o b = 2a (where a # 0)

Hence the equation must have the form
ax + 2ay = 2a (a # 0)
or equivalently
X + 2y =2
The solution set (in integers) for this equation
represents the unique "line" determined bhy
the two glven points.

(d) sSince the plane m = Z X Z is a set of lattice points
we seek "lines" of lattice points for which the
Euclidean parallel axiom (axiom 3) fails. Such
"lines" are indicated in the diagram.

Y. e k¢S 7ﬂ

Ly ox +y

i
o
N

m: ox +y

.

n: 2x -y =0 /
> Py ’e“»
L/
. m
- i KQKQ
/
/
/ m and n are distinct lines
//// containing the point (o, o).

'Yet m and n are each "parallel”
to 4,

e
..1-5
o~
-
Il
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- Yes, In fact the illustrations used in 8(v) are

equally appliceble in Q x @ because all ordered pairs

~of integers are contained in @ x § as well.

No. The counter example in 8(c) is no longer

valid in @ x A because although line m is still

parallel to line £, 1ine n is no longer parallel to
L. In fact lines n and £ intersect in the "point"
(1/2, 1) as is readily seen by solving the two
equations,
This problem should not be assigned until after
Chapter 6, Section 6.15, problem 6. Then it can
be done by the point-slope form of an equation. An
alternate solution is given here.
Axiom 3 asserts that for every line m and every
point E in the plane 7, there is one and only one
line containing E and parallel to m.
To verify this for the "line" m deflned by

3x+ U4y =5
and the "point" E = (2, 1) we first observe that

- point E is not contained in line m because (2, 1)

does not satisfy 3x + U4y = 5.
Next we seek an equation

ax + by = ¢
where a, b, c are rational numbers, & and b not
both (0, and such that this equation 1is satisfied by
(2, 1) but is not satisfied by any of the solutions

i 3
—
o
L p)
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of 3x + 4y =5, Substituting (2, 1) in the equation
ax + by = ¢ we obtain |

ax + by = 2a + 1b
or a(x - 2) + b(y - 1) = 0. (This is clearly
satisfied by (2, 1)). Now from the equation
3x + 4y = 5 we obtain

x = 25

Substitute in the new equation:

a3 -2)+b(y-1)=0
a(:l-g-ﬂl +b(y -1) =0

‘a(-1 - 4y) +3b(y - 1) =0
(3b - 4a)y = a + 3b

‘Now if 3b - 4a # O this equation can be solved for

Y. Hence, since we want no solution for y, we must
stipulate that

3b - 4a =0

i.e. b = ga

~where a may not be zero because otherwise both a and

b would be zero. Substituting b = ga in the equation

a(x - 2) + b(y - 1) = 0 we obtain
a(x - 2) + ga(y -1) =0
and since a # 0, this equation is equivalent to
(x -2) + g(y -1)=0
3(x -2) +4(y-1) =0
3x -6 +4y -4 =0
3x + 4y = 10
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This equation defines the desired line. To check

‘ that it contains point E we substitute (2, 1) for

(x, ¥):

3(2) + 4(1)
10 =10

10

i}

To check that it is parallel to line m we observe
that the equations

5
10

2x + 4y

i 3x + 4y

are clearly inconsistent. No ordered pair (x, ¥)

z can satisfy both equations because 5 # 10.

10. (a) L)

| A

D

“ I ¢

(b) By (2) there are at least two committees. One of
these has exactly 3 members; call them A, B, C. The
second committee has one member from each other

? committee. But by (1) this second committee must

. also contain another member D and this other member

D must be different from B and C because of (3).

Thus there are at least four people in the family.

{Note that we did not use (4) in this proof but we

did use it to set up the model. (4) requires that

E and D form a committee and also C and D.}

ERIC 108
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é (c) Each line is parallel to itself, but no two
distincf lines are parallel because (2) stipulates
that each line contains a point from each other
; line.
11. (a) (Theorem 14)
There are et least six lines in plane P.
Proof: By Theorem 13, there are four points in plane
P no three of which are collinear. Call these
points A, B, C, D. Since these points are distinct
every two of these points determines a line by
axiom 2. We can select two points out of the four
in six ways:
| (A, B} (A, C} {A, D}
{B, C) (B, D} {c, D}
The six lines thus determined must all be distinct,

S

; because no three of the points are collinear.

(b) The four point geometry exhibits exactly six lines.

3.10 Equivalence Classes of Parallel Lines (Time 1 - 1%-days)

Before teaching this section it will be helpful to review
with the students Section 8.15 of Course 1 (Equivalence
Classes and Partitions). The particular equivalence classes
introduced here are families of pérallel lines. A brief

descriptive term for each family is the phrase "parallel

class of lines" or simply: "parallel class". Many mathemati-

cians prefer to call these equivalence classes "directions”.

109
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Thus &ny pair of parallel lines are said to be "in the
same direction", meaning "in the same equivalence class".
In the text we have avoided using these other descriptive
terms, but the teacher may chdose to use oné or more of
them, 1f he feels it will be helpful.

Have the student interpret the equivalence classes in
the various models he has studied. The exercises include

a few such interpretations.

3.11 Exercises

Exercises 1 and 2 are useful for reviewing the three
requirements for an equivalence relation (reflexivity,
symmetry and transitivity). Exercises 3 and U provide
practice in interpreting equivalence classes in épecific'

models, .
Exercise 5 (Theorem 16) should be added to the theorem

Iist.' Exercise 6 is a nice application of Theorem 10,

although it can be proved without using Theorem 10.

3.11 (Solutions to Exercises)

1. (&) no (b) yes (e) no (d) yes (e} no
(f) no (g) no (h) no (1) yes
The equivalence classes are:
(b) The subsets which contain all living people who are
& given age

(d) The sets of books having & specified number of pages

410
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(1) The sets of students in a particular grade
2. (a) Reflexivity: Every book has the same author as

itself.
(b) sSymmetry: If book x has the same author as book
y, then book y has the same author as book Xx.

(c) Trensitivity: if x has the same author as y and

y has the same author as z, then x has the same
author as z.

(d) The equivalence classes are the sets of all books
by a particular author,

3. Edquivalence classes for tennisvclub model of Exercise 1

Section 3.9:

{(a, B), (c, D)}

((a, ¢), (8, D))

((4, D), (B, C))

Noté: These equivalence classes are the parallel lines

for the relation, "is parallel to."

4, (a) For the nine point geometry,

Ao 8___¢) kT
| » ] E > \.\ \~\‘ o
. M “aTRE SN
L-—-—‘-—— I ~ \\ N
‘ h S
4
ﬁ, [+ [ X Va ‘} /5
1 f /
, | f / /
| es r; o
Ds 8L ({F / /
] | l ,
! | ! / 7 /
& % *¢ ‘q 4
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(»)

{IA,B,C'.D,E,F‘ G,H,I} {‘A,E,I B, F;G ]c,n,n}

{A,D,G B,E, H C,F,I} {C,E,GI A,F H B,D,I}

(Theorem 16)

There are at least three distinct equivalence classes in

plane .

Proof: By Theorem.12, if A is & point in plane T, tuen

there are at least three distinct lines r, s, t i1n m, each
containing A. Each of these lines determines the
equivalence class of all lines in 7 parallel to that line.

Call these equivalence classes Er’ Es and Et respectively.

These equivalence classes are distinct, in fact disjoint,
because if, say, E, and Eg both contained a line £, then
r and t would be distinet lines each containing A and
each parallel to £ in violation of axiom 3. Hence there
are at least three distinct equivalence classes in

plane .

No; because if D contained n, then D would have to
contain every line parallel to n and therefore would

have to contain m, which 1t does not.

149
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3.12 Parallel Projection (Time: 2 - 3 days)

The ideas introduced in this section are basic for‘
much of the subsequent work in coordinate geometry. The
section brings together a gumber of ideas the student has
encountered in various other parts of the course. These
include the notions of mapping, one-to-one correspondence,
inverse mapping and equivalence class. These ideas, applied
here, lead to the fundamental concept of a parallel projection
from a line n onto a line m, on which much of geometry can
be based.

Two interesting corollaries of Theorem 17 are: (1) all
lines in P have the same number of points: and (2) if one
line in P has infinitely many points, then every line m has
infinitely many points. These corollaries are proved as follows:

Proof of (1): Let m and n be any two lines, By

Theorem 17, there is a one-to-one correspondence between

the points of m and the points of n. Hence m'and n have

the same number of points.

Proof of (2): Suppose a line m, in 7, has infinitely

many points. If n is any other line in 7, there is

& one-to-one correspondence between the points of m

and the points of n (by Theorem 17). Therefore, since

m ha. infinitely many points, n must also have infinitely

many points. Care should be taken when speaking of a

~mdd
'vm&
3
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mapping Dm that the domain is stated. Sometimes the
domain is the entire plane 7, and sometimes it 1is

restricted to a line n.

3.13 Exercises

These exercises provide practice with parallel
projections and aim at discovery of some of the properties
of parallel projections. The exercises are intended to be

chiefly of an experimental and exploratory nature with the

students formulating conjectures about pearallel projections.

No formal proofs should be called for in this set of exercises.

2.13 (Solution to Exercises)

1. Loy Image points

\& \ indicated by A,
\ 1y B', C', D', E!
Vi,

, . ( = B')

3 L4 m

Iy X E
1

2. (a) The point where n intersects m.
(b) Each point of m maps on to itself.

Apa

3. S \ [ lr1
m = v /

(a) Y.

n e D
(b) A and B, respectively

(c) They are inverse mappings.

ek
..,_.&
N
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(2)

(3)
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©).. A

\ /"//
\ v
\
VA" m "///
‘D
" “ \
A' \\\\
— Al 1\
(Dy), © ‘(Dz)n = A \\\\
2
/,
/
/
/ "
’:‘&/f m (De)m ° (Dl)n =4
N -
A 2
!
! "
|
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(4)

(Dy), © (Dy)y, = A"

4, (c) sSimilar diagrem with another point B3 on £.

composition of parallel projections appears to

be non-commusative.

A N B\ Ag, 8,

3
S S
>

\\'

Yes. In this case the composition of the

parallel projections appears to be a parallel

projection.

(a)
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Yes
6.
j 3
Dy v';{}\\ |
i N B ‘
I -
i ;
7 1
Wi (
(a)

A

(b)

N
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3.14 Vectors (Time: 2 - 3 days)

In a sense, this section is a digression because it uses
properties of a plane 7 which go beyond those prescribed in the
axioms. It introduces the student to the notion of a vector,
via the concept of "directed segments". 1In Course III these
ideas will be defined precisely. For the present an
intultive approach via a physical model will be sufficient.

In this connection a review of the notion of translation is

helpful. Another helpful notion is that of a composition of

translations, an idea which is closely related to addition
of vectors.
Give the students lots of practice in drawing diagrams

showing the various operations on vectors:

-t -d -t - -t -
a, -a., a + b, a - b
28, 33, (-2)a
The arrow notation used here is temporary. Other notations for

vectors will be introduced in Course III. Discuss non-

e e e R It s JRO— [ e

mathematical interpretations of vectors such as forces,
velocities, accelerations, price-vectors, etc. (See Kemeny,

Finite Math, or Richardson, Funds.entals of Math).

3.15 Exercises

These exercires provide graphical experiences with
directed segments. Emphasize that the directed segments

represent vectors, They are not themselves vectors. For
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Exercise 3, please note: For convenience and easier
checking of students' work, give students the following

directed segments to use in doing problem 2.

S 'y o)
T

3.15 (Solutions to Exercises)

1. (a) one

(b) two
(e) two
(a) two
(e) three
2. (a) three
(b) BB = ED
BC = FE
E—— .. OA.=.DF . - _

-mb
o)
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(b) The sum vectors appear to be the same, illustrating
the ASSOCIATIVE LAW.
(¢) Similar diagrams.

5. (a)
—&.‘. - I” —
W!
o+ 1
(b) —C _
@ C
(C) fg":‘i:—j’_ﬂ
¢
6. (a) 8 (v)

(d)
(c)
NI
ot )
& | ! :
R 7 -2
oo j |
-
\ A . ! LY
\ 8 ’

190
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e~

Ty 8c
—pn
/) ch

AR+ 0c4+echt = O
The result in (f) introduces the concept of the zero vector,
3, and inverse vectors.

7. (a) (b)

o\ %
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(a)
€x - -
T :\\'Q_ o+ Ir = 0O
T x> _
~ \\.‘9
(b) 3>, -7 P+ = T
=D, =D > - >_ >
b+ 0°=D o+ b= D
o0+ 0= 0

General Rule: 70+ = ¥+ 0°= X for 81l vectors X

By reasoning from properties of translations:
Since a vector a represents a translation there exists a
unique inverse translation ¥ which maps each point on to

itself. The composition of these two translations 1is the

- -

-d -d -3
zero translation: & + x =x + a8 =0

3.16 Summary (Time: 2 = 2% days)

The axioms are listed here but not the theorems. However,

each student may have bnilt up a 1list of the theorems in his

notebook.

3.17 Miscellaneous Exercises

Exercises 1, 2 and 3 are not difficult and provide a

good review of concepts developed in this chapter. Exercise

4 is an exploratory one leading to generalizations in

194
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Exercise 5. Proving these generalizations will probably be
difficult for the average student. However the better
students should find these results interesting and challenging.
It is worth noting that there are still unsolved problems
related to the ideas in Exercise 5.

Reference: Prenowitz; Jordan. Basic Concept of Geometry.

3.17 (Solutions to Miscellaneous Exercises)

1. By axiom la, plane T contains at least two (distinct)
lines, call them m and n. By axiom 1lb, line m contains
at least two (distinct) points, call them A and B, and
line n contains at least two (distinct) points, call them
C and D. If C and D were both also in line m then by
axiom 2, n would be the same 1line as m. Hence at least
one 6f the points C and D, let us say C, is not in m.
Therefore, A, B, C are three non-collinear points in P.
By axiom 2 there is a line containing each pair of points
(A, B}, {A, C}, and (B, C} we already know that m
contains {A, B} and n contains {A, C} and that m and n are
distinct lines, Let £ be the line containing (B, C}.
4 must be distinct from either m or n for otherwise A,
B and C would be collinear., Since £ already contains
point B in m and point C in n, £ cannot contain any other
point in either of these lines for otherwise by axiom 2
L would be the same line as one of them. Therefore, lines

L, m, and n are non-concurrent.

195
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2. (a) axioms 1 and 2 are true for this model but axiom 3 -
is false. |
(b) Three: (F, C}, {F, D} and (F, E}.
(c) (A, C}, (A, D} and (A, E}

3. Referring to the proof of Theorem 13 (see Exercise 9 (a)
in Section 3.7) we obtained four lines in w,m, n, £ and r
and four points A, B, C, D such that:

milln 2| R

A anéd B are inm

C eand D are inn

A and D are in £

B and C are in r
and no three of the four points are collinear. It follows
that £, m, n and r are distinct iines (otherwise the four
points would be collinear). Moreover no three are

concurrent because two out of any three of the lines are

; parallel,
? 4, (a)
; No. of points |No. of lines|No. of points | No. of
! in each line |(containing |{in plane 7 lines in
) each point plane T
Eu-pt. geomg 2 3 4 6
9-pt. geom 3 4 9 12
4 5 16 20
(b) K K+ 1 K2 k(k + 1)

SIS
..Q
o
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5. (a) Proof: (Using Theorem 1ll--See Exercise 9, Section
3.5)

Since one of the lines in plane P, call it line £,
contains exactly k points, and by theorem 1 there is a point
A in P which is not in 1line £, there exists a one-to-one
correspondence between the set of all points in £, and the
set of all lines in P which contain A and are not parallel to
4. (by Theorem ll--see note above.) there exists, by Axiom
3, a line m containing point A and parallel to line £. This
line m must also contain another point B, by Axiom 2, and
B Z 4, There also exists a.one-to-one correspondence between
the points in £ and the lines in P which contaln B and are
not parallel to 4. Now censider a line, ¢, contalining point
A and one of the k points contained in £. By the same
Theorem 11, there 1s a one-io-one correspondence between the
set of points in g and the set of all lines in P which
contain B and are not parallel to q. There are k such lines
in P (the k lines containing B and the points of £, minus the
one line containing B and the chosen point of £, plus the line
m, containing B and A) and hence there must be k points on

line q, and all 1lines of plane P.

Note: See figure next page

1y




(v)

(c)

Proof: (This follows from Theorem 11, also)

Let A be any point in P. By Theorem 4 there is a

line m in P which does not contain A, By the

result just proved in part (a), line m has exactly

k points. By axiom 2 for each of these k points there
is exact)ly one line in P containing that point and
point A, 1In addition to these k lines each containing
A and a point of m, there also exists in plane P

(by axiom 3) exactly one line which contains A and

is parallel to m. Since every line containing A is
either parallel or else not parallel to m, this
accounts for exactly (k + 1) lines in P containing

A.

By part (b) there are (k + 1) lines in plane P
containing any given point A, in P. Let B be any

10
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other point in P (distinct from A). By axiom 2,
there is exactly one line in P, ccntaining both A
and B. This line must be one of the (k + 1) lines
that contain A. In other words, each point B in
plane P, other than A, 1s contained in exactly one
of the (k + 1) lines through A, Each of these

(k + 1) 1lines contains (k - 1) points other than A,
Hence plane P contains (k + 1)(k - 1) = -1
points other than A. Therefore plane P contains k°

points, including A.

First Proof: Since each line in P contains exactly

k points, (by pert a) and each of these k points lies
on exactly k + 1 lines (by part b), there are

exactly k + (k + 1) lines in plane P.

Second Proof: Since plane P has 12 points (by part

c¢) there are K . (kg - 1) pairs of distinct points
2

in P, (To form all possible pairs of points, choose

any one of the k2 points for the first and any one of

the remaining (k2 - 1) for the other. In the

k2 . (k2 - 1) choices, each pair appears twice--as
A, B and B, A for example. Hence, K . (k2 - 1) will
2

be the number of pairs.) Each of these pairs

determines a line in P, but these lines are not all

distinct, In fact for every set of k points which

are collinear there are exactly k « (k - 1) pairs
2
of distinct points all of which determine the same

line. (See reasoning above.) Hence the actual
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number of distinct lines in P is:
2,.2
k (kW -1
E0C - 1)
k(k -~ 1)

Note: You will have to show students that

= k(k + 1)

km -1

k“ - 1= (k - 1)(k + 1) and hence T

Sample Test Questions

I. True or False

(a) If line m is parallel to line n then m ard n have
no point in common. (m and n are not necessarily
distinct.)

(b) In the plane 7, {f m || n and if line £, in 7,
contains a point of m, then £ contains & point of
n.

(¢) Every model which satisfies axioms 1, 2, 3 must
contain at least six lines.

(d) In every finite model which satisfies axioms 1, 2,

| 3 there are exactly the same number of lines
containing any given point as there are points on any
given line.

(e) If A is any point in plane 7 there are at least twc
lines in 7 which contain A and at least two lines in
m which do not contain A.

II. If m and n are lines in 7, under what circumstances would

ERIC 1m0
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you say that

(a) m and n are paraliel

(b) m and n are in the same equivalence class
Explain whut 1s meant by each of the following:
(e) . D_ (Assume the domain is the plane, 7)

m
(v) E, under D [alternate: D, (E)]

(¢) mll n

(d) aRb, if R is a relation

(e) ahb =4

A proof of a simple theorem 1s glven below with all the

reasons omitted. There are 5 steps to the proof. On

your own paper list the numbers 1 to 5 and supply the

reason that fits the corresponding statement.

Theorem: 1In 7 if m is any line and E is any point not
in m, then there are at least three lines

containing E.

.E

Proof':

(1) m has two points, call them "A" and "B".

(2) fThere is & line containing E and A, call it "r",
and a line containing E and B, call it "s".

(3) There is » 1line containing E which is parallel to
m, call it "t".

(4) ILine t is distinct from lines r and s.

(5) ILines r and s (EA and EB) are distinct.

1m
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V. Let R be a relation defined on all pairs of lines in &
as follows:
Xx and y are in the relation R
if and only xNy # &
Decide whether or not R is an equivalgnce relation and
explain. (Be liberal with partial credit for good
thinking.) |
VI. Relying only upon the axioms, prove the following:
Let m be a line in equlvalence class D. Prove that
there 1s & 1line distinet from m that is also in D.
(Note: You may wish to let students rely upon the

axioms and previously proven theorems.)

Answers to Sample Test Questions

I. (a) False (b) True (c¢) True (4) False (e) True
II. (a) Eitherm =normn = ¢
() mlln
I1I. (a) Dm is the parallel projection that maps plane m onto
line m in the direction of D.
(b) E, 1s the image of E in m under a parallel projection
Dm.
(¢) m and n are parallel, that is, either m = n or
nfm = ¢
(d) (a,b)€R, or a and b are in the relation R, or a is in
the relation R to b.

(e) & and b have no points in common, or & and b are disjoint.

10



Iv.

- 130 =~

1. Every line in 7 ccntains at least two points.
(Axiom 1lb)

2. There is one and only one line containing any two
points. (Axiom 2)

3. For every line m and point E there 1s one and only
one line which contains E and 1s parailel to m.
(Axiom 3)

4, r and s intersect m while t does not.

5., If EA and EB were the same line then points E, A, B
would be in AB orm. As E is not in m, EA = EB.

R is not an equivalence relatio~ because we ccuid have

distinct lines m, n, s such that mNs # ¢, stn # @, and

mn = ¢. In other words, we could have (m,s)€R,

(s,n)€R, and (m,n)#R. ///um

B ;7E57 " —TZZ>Z3p

—>Wm

We have proved that for every line m there is a point,
call it E, that is not in m. By axiom 3 there is a 1line,
call it n, parallel to m and containing E. If E is not
inm, n #m. But m and n are in the same eguivalence

class because m || n.

"3
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Note: If you reduire that students rely only upon the
axioms, they will have to prove that for every line m

there is a point E not in m. (Thecrem 1).

(Rl R
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Chapter 4

Flelds
Time estimate for Chapter: 14 days

General Comments:

This chapter has two major objectives ==~ to extend the
study of abstract operational systems to fields and, in the
process, to deepen student insight into the algebraic struc-
ture of the number systems. Since the additive and multipli-
cative structures of a field are groups (with a persistent
proulem involving o, the additive identity) the important
theory of this chapter is that which concerns the interaction
of the two operations via the distributive property.

The most interesting results are Theorems 5, 6, 11, 12,

and 15,
Theorem 5. a *0=0+*3a=0
Theorem 6. a*b=o0oiffa=o0o0rb=o0
Theorem 11. (-a) « b=a+ (=b) = =(a - b)
Theorem 12. a+(b-c)=a+-b-2a-c
Theorem 15. _% = -% = - %‘

Since these are mostly familiar facts in (Q, +, +), 1t is
important to use the finite fields (Zp, +, +) in 1llustrations
to show that the concepts have validity and usefulness in
other settings.

Though the development of the theory of fields and ordered
fields 1is rigbrous ~== in the sense of formally stated axioms

Q and carefully proved theorems =--- gtudents should not be

175
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expected to memorize proofs to any particular theorems.
There will be opportunities to discuss concepts of logic and
proof, illustrating ideas from Chapter 1, but keep in mind
the fact that almost all topics in the chapter will be deve-
loped further in future courses. The key sections of the pre-
sent chapter are 4.4, 4,10, 4,12, 4,13, and %4,15. Sections
4.8 and 4.9 are not essential, although your class might find
the use of fractions in finite fields fascinating.

The entire chapter should not take longer than 1% teaching

days to cover (exclusive of Review Exercise-~ and Chapter test.)
The Review Exerclses may be assigned during, at end, or in

future spiralled assignments at the teacher's discretion.

4,1 What is a Field? (Time: 1 day)

The particular collection of properties used to de:iine
field is chosen to get a two-fold system that comes as neax
to being two interacting groups as possible and because three
xey number systems (two yet to come) have field structure.
The non-symmetry of distributivity i1s forced by the behavior
of 0, the additive identity element, under multiplication.
After the students have had experience with Theorems 4 and 6,
it might be well to consider the following disproof which
i1llustrates why addition does not distribute over multipli-
cation.

1+(1L.0)=(1L+1) (1 + 0)

would imply l+o0=(1+1) «1

104
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=1+ 1

'-'—‘10

The need for ditfferent symbols for additive and multipli-

cative inverses 1s obvious:

multiplicative inverses might need some selling.

L,2

1.

Exercises

Standard names

(a) Additive inverses

-3 #£ 37, The choiacea of a ' for

(5)
(6)

(4)
(5)
(6)

(e)
(£)
(g)
(h)

(c)
(a)

(1) - 3%
(2) 3
(3) -4
(b) Multiplicative inverses
(1 3
(2) -3
3 $
Computations
(a) 33
(b) %
(c) 7%
(a) 2%
Computations
(a) o
(v) o 10

e ofg -

o HsE o

no
iy
o

(7)
(8)
(9)

(7)

(8)
(9)

24

none
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L, Standard Names

(a) Additive inverses

(1) o (4) 3
(2) 5 {5) 2
(3) &4 (6) 1
(b) Multiplicative inverses
(1) none (4) narcne
(2) 1 (5) none
(3) none (6) 5
5. Standard Namer
(a) & () 5 g) 4
(b) 2 (e) 3 (h) 3
(¢) o (f) none (1) o

6. FPields?

(a) no inverses (There does not exist a b7 eeenon %3 %...)
(b) no * inverses (g) vyes
(¢) no + inverses (h) no « inverses for 2,3,4,6,8,

9,10
(d) no + identity ’
(e) (1) no -+ inverses for 2,4,6
e) yes

(j) no + inverses for 3,6
(£) - no + inverse for 2

(x) no . inverses for 2,4,6,8,5
7. x® =2, solvable in (Z,,+,*) where 4? = 2
8. (£), (n), (1), (3), (x)
9., Let a=p, and b = q. Then a *+ b = n which is o in (Zn,+,-).
10. Yes. (Students should demonstrate the field properties
which hold in this system.) .
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4.3 Getting Some Field Theorems Painlessly (Time: 2 - 3 days
for 4.3, 4.4, 4.5)

Brush over this quickly, but point out the dividend of
group theory and the translation of results from general to

specific case,

4.4 Trouble with @

There is no way, and perhaps expectedly so, to avoid the
complications introduced when docile 1little O is asked to mul-
tiply. Emphasize the way that addition (0 is really only dis-
tinguishable as the additive identity), multiplication, and
distributivity come together in Theorem 5 (a « O = 0). Stress
that Theorems 5 and 6 can be restated compactly as follows:

VYVa, b €F, a +b=01iffa=0o0rb=20

Although the solution of quadratic equations is considered
in more detail in later sections (4.6, 4.13), the teacher may
want to give geveral quadratic equations at this time as an
immediate application of Theorems 5 and 6. For example:

x(x +3) =0
(x + 2)(x --%) = 0 ete.

4,5 Exeraoises

1. Standard Names

(a) 1 @ 3
(b) 10 (e) 3

(o) 3 ° (£) 5
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2. Group Theorems

(a) For all a in S, (a.I)I = &

(b) For all a,b in S, (a # b)F = bl # af

(¢) PFor all a,b in §, x # a = b has unique solution x = b # s,
3. a4 0 implies a ' exists.

soat o (a * b) = al . (a ¢« ¢) Left operation which

implies (a.-1 *a) °b = (a.-1 ca) cc Associativity of -
or l1*b=1¢°¢ Definition of inverses
or b=¢ Definition of identity
L, Standard names
(a) =21 (d) =2
- 1
c -
(£) 32

5. Restatement of Theorem:
If & € (F,+,°) and a # 0 then a? # 0.
Proof: (Indirect Method) Suppose a® = 0. We show that

this leads to a contradiction,

8?2 = 0
a*a =0 Definition of a3
sLa=0 or a=0 Theorem 6 (a = b)

But a # 0 by hypothesis.
Hence there is a contradiction and our supposition that
a? = 0 must be false. Therefore a2 # 0.
6. Computation

(o) 1 (d) 2

o (b) 4 1[1“ (e) 4

[RIC (@ T ma
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7. o}
8., Proof: a+b=o2aimplies a +b =a +o0
implies b = 0 by cancellatican
(Theorem 4.)

9. Proof: (b+c) *a=a-+ (b+c) Commutativity for -

& +«b+a . c Distributive Property

b+« a+c + aCommutativity for -
10. If n=p * q, there are elements a,b in Zn and not equal
to 0 such that a * b = 0. But by Theorem 6 this cannot

heppen in a field. Thus (Zn,+,°) must not %e a field.

4.6 Subtraction and Division (Time: 3 days for 4.6 and 4.7)

This section develops several important theorems and,
therefore, time should be spend on this section so that the
students will understand the proofs and applications to alge=-
braic manipulation.

Exemples 3 and 4 should be done in class as the students
may have difficulty doing this on their own. Many more
examples of this type should be done 1n class before doing
section 4.7.

The teacher may wish to expand on this development by
following section 4.7 by 4.13, 4.14, 4.15, 4.16. After com-
pleting the solution of quadratic equations, the teacher can

return to 4.8 and complete the chapter.
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4,7 Exercises

1. Standard Names

(a) 3 (a) £
(v) -2 (e) £
(¢) =F (£) -3
2. Standard Names
(a) 6 , {e) 1 (e) 4
(b) 1 (@) 6 (f) 2
3. Simplifications
(a) x (c) Bx
(d) -Zx (d) 14 + 15x
4, Solution Sets
(a) 53) (@) o, 4}
(b) f{o, & (e) (-3, 3}
() fo, §} 0 & -3
5. Proofs.
(b) a-0=a+ (-0) Definition of "-"
' =a+o Definition of inverses
= a " Definition of Additive Identity
(¢) o-a=o0+ (-a) Definition of "-~"
= =8 Definition of Additive Identity
(d) a -b=a~-c implies a + (-b) = a + (-c)

Definition of "-"

1a9
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implies (-b) = (=c) Left Cancellation

implies 1(-b) = 1(-b) TLeft Operation

implies (-1)'b = (=1)<c Theorem 11

implies b = ¢ Left Cancellation
(e)

a-b=oc¢c implies a + (-b) = ¢ Definition of "-"
implies a + («b) +b=¢c + b Right Operation
implies a +o=¢ + b Definition of Inverses
implies a = ¢ + b Definition of Additive
Identity

a=c¢c+b implies & + (-b) = ¢ + b + (-Db)
Right Operation

a+ (b)) =c+o Definition of Inverses
a+ (=b) =c¢ Definition of Additive
Iden@ity '
K a=-b=c¢c Definition of "-"
6. (a) a+a=a-+a’ Definition of "+"
=1 Definition of inverses
(v) a+l=2a-.1" Definition of "s"
=8 *1 Definition of Inverse
of Multiplicative
Identity
= 8 Definition of Multipli-
cative Identity
(e) l+sa=1-°a’ ~ vefinition of "+"
= a™t Definition of Multipli-
cative Identity
(a)
a+b=8as+c implies a b ' =a «c

n,n
‘Mg Definition of "+



v =t Left Cancellation
(b)Y = (¢™)™* Rignt Operation
b=oc Theorem 7
(e)
a+b=c implies a - b = ¢ Definition of "+"

8 o b-1 s+ b=¢ D Right operation

a=¢°*b Definition of Inverses
7. Proof:
a°*(b=c)=a-+ (b+ (-c)) Definition of nn
=8 *b +a * (-c) Distributivity

=8 + b+ -(a ¢« ¢) Theorem 11

=8 *b=-8a-°c¢ Definition of "-"

4.8 Fractions in Fields (Time: 1 day for 4.8 and 4.9)

This sectlion affords an excellent opportunity to gilve
students much needed computational practice with fractions.
Therefore, even though this section is starred, it is recom-
mended that time be devoted to exercises 4,9 either as a class
lesson or through the homework. The teacher may also wish to
supplement this section with additional problems involving

fractions from a standard algebra text.

4,9 Exercises

1. Standard Names

() 5 ) 5

141
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(e¢) 2 (e) 3
(d) 2 (£) 3
2. Standard Neames
(a) 2 (¢) 2 (e) 4
(b) 2 (a) & (£) &4
3. Proof:
%-.-% = (a:p°Y) .« (bed ) Definition 4
= (d-a"') + (bed ) Associative

and Commutative Property
of Multiplication

=1 1 Definition of Inverses
=1
4, Computations
(a) &4 (b) &
5. (®) -(3B) =-B)=-1=6 () Z-2-6

2=6 2;6'

(@) -(3) =-6=1

s 6. Proof: | 'g- = -g— =1
? -(f) = -((-a)- v") Definition 4
i ' —a-b" Theorem 11 and Theorem 1
z =& Definition 4
£ 7. Proof:
| -(8) = -(a - v ") Definition 4
= (-a) + b7 Theorem 11(b)

Definition 4

1]
oA T

15
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4,10 Order in Fields (Time: 2 - 3 days for 4.10 and 4.11)

The questions of which familiar fields are orderable has
been avoided intentionally (and deceltfully) until after some
ordered field theory 1ls developed because the rational number
system is the ordered field that students have met. The real
numbers, of course, will come in Chapter 5 and order will be
the basic notion there.

In the present section the numbex of formel theorems has
been limited to keep the topic manageable. The most important
property in the section (in addition to the four basic axioms)
is Theorem OF - 3(b) |

a>bandc <o = aé < be.
The importance and use of this theorem should be illustrated
in the solution of inequalities such as =3x >-12. Students will
observe that except for OF 3(v), there is a parsellel between
solution techniques for equations and inequalities. This will
be used again in Section 4.13. |
In the exercises of Section 4.11, numﬁers 9 and 10lgggg;g

be covered; the results will be used later,

4,11 Exercises

Must do: numbers 9 and 10! (The iff indicates the rever-
slbility of each step, so that two theorems are proved simul-

taneously.)
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1. Correct symbols

(a) > (v) < (¢) > (a) > (e) >

() < (g) > (h) < (1) > (3) 2

(k) <
2. Equivalent inequalities

(2) x>-2 (b) x > -8 (o) x@ <l

or -2 < x< 2
3. Proof: a<oiff o< o-a Theorem 1 (a)
iff o < =-a 0 1s the Additive Identity

L, -a<b iff 0<b=-a Theorem 1 (a)

iff o+ =b < Db + -a + =b OF 03

iff b < b + =b + -a Additlive identity and
Commutative Property of +
iff b <0 + -a Definition of Inverses
! iff -b < -a Additive Identity
? 5. Proof: a > b implies a+c¢c > Db + ¢
: OF 03
¢ > dimplies b+e¢ >Db +4d

Thus a +¢ > b +dbyo-1.

+

6. Proof: a > o implies a +b > 0 + Db
OF 03

b> o implies o +b > 0 + 0

E Thus a +b > o by o - 1.
i 7. Proof: a>o andb > o implies a - b >0 + b  OF Ok
? implies a * b > o0 Theoren 5
5 8. Proof: (1) 8 =o implies a = o Theorem 6
(2) a <o iff o< -a Theorem 1 (b)
0 < -a implies o « (-a) < (-a)(-a) OF O4

implies o0 < aca = a? Theorem 5 and
Theorem 11 (c)

1A%
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(3) a>o0 impliesa - a > & * o OF O

implies a® > o Definition of
a+a and Theorem 5

Note the proof here is by cases.
9. Find t so that a = tb, 0 <a<b and 0 < t < 1.

(a) For given a and b.

(1) t=% (2) t=-% (3) t=13
. _a
(b) rule: t = -B
10. Archimedean Property
(a) Find n
. (1) n>25
(2) n > 37001
(3) n> 34
; (p) Rule: n > %
t x 1if x 2_ o
‘ 11. For all x, |x| = { . This exhausts cases
; - -x 1f x <o

by o = 2

positive 1iff (x > o
. This exhausts

T FRE

12, For all x, x is %

negétive x<o0

caées by o - 2,

i ST AN R

4,12 How Many Orderable Fields? (Time: % day or independent

reading assignment)

Although reaction to the non-orderable proof for (Zg,t,°)

might be a desire to throw out the eaxioms Ol - O4, in an opera-

t tional system context it is useful to have an order relation

148
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that connects to the operations. Order as an independent con-
cept can be and is defined somewhat differently in other situ-

atioas.

4.13 Equations and Inequations in (Q,+,°,<) (Time: 2 days for
4.13 and 4.14)

As mentioned previously, this section can be done in con-

Junction with sections 4.6, 4.7, and 4.,15. Examples 1 and 2
of this section 1llustrate in detail how the principles of
logic and fields are used in the solving of equations. How-
evér, while students should be able to explain each step of an
equation, they should not be expected to show all the details
in their solution. You might want to give students more prac-

tice in solving equations than is contained in the exercises.

4,14 Exercises

1. Equivalent expressions

(a) 8x + (=7) (a) -6x" +73
(b) -15x + 2 (&) -3 x+60
(c) 2x (£) 9x + (-17)x
2. Solution sets |

(@) (-5 | (&) ()

(®) (- 12} (£) {23

() {39 (€) {3

(@) (188 (h) 1)

149
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3. Solutions of inequations
(2) x <-% or solution set S = {x: x € Q and x < %J
(b) x> --ég or solution set S = {x! x €Qeand x > ~ 32]

(c¢) x> --% ete. (f) x< -'%
(a) -i%<x‘ (g) x>13§'
(&) x<d ) e

4., Solution sets
(a) (28} (v) {12} (c) ({8} (a) (8}
5. | 4737 cycles.

4,15 Solving Quadratic Equations (Time: 2 days for 4.15 and 4.16)

The first two sentences of this section will cause con-
fusion. In the first place, students have indeed encountered
equations involving symbols such as x? (See, for example, Sec-
tion 4.7, ex. 4(b)). Furthermore, the second sentence gives
the erroneonz impression that equations involving symbols like
x? are called linear equations. The difference between lincar
and quadratic equations should be made clear.

Tﬁis sectlon covers only quadratic equations that are
easlly factorabile over the rationals. _More general techniques
appear in Course III, Chapter 5 on "Polynomials."

A Again you may want to supplement the exercises on fac-
toring and equation solution to meet the needs of your class.
| Remember; however, the topics will be touched again in a

future course.




et g .

- 148 -
4,16 Exercisgg.
1. Products
(a) =x® + 18x + 77 (f) =x® - 30x + 176
(b) x® +§x - o2 (8) x* -9
(¢) x® -« 6x +9 (h) x® +x - 20
(d) x° + ihx - 176 (1) 12x® + 23x + 10
0
(e) x® - 1bx - 176 (3) e - 22+ 10
2. Factored form
(a) (x +5)(x + 4) (a) (x - 5)(x + 4)
(v) (x - 5)_(x - b) (e) (x - 10)(x +2)
(e) (x +5)(x - 4) (£) (x + 2)(x + 10)
3. Solution sets |
(a) 0, 11} (@) 3
4 5
®) (5 -3 () (t 8]
(¢) 10, - 3} (£) (o, - 13
L4, Sclution sets '
(a) (-3, -5} .(e)' {31 .
(v) (4, 2} (£) {6, -2}
(.C) {'13: 2} (g) {'6: 2]
(a) {-3} (h) {4, 3}
5. Solution sets
(a) 231 (a) (-3}
(b) {0, & (&) {51
(e) £}
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6. Solution sets

(a) -2<x< -1 (¢) -5<x<K5
(b) x <=7 or x>2 C(a) F<x<
Te. Solution sets
(a) (2,9} (e¢) {3, 5}  Answers to -
questions in
(v) {9, 10} (a) {5, 6} Note: - Yes, 6 No
8. Solution sets
C(a) (b, - §) (e) -3 -1)
(b) {2, - §} () +3)

4,18 Review Exercises

1. Computations

(@ 6 (8 3 () O (4 5
2. Computations

(a) -8 (c) I°
() =L (8) - 13
3. Proofs '
(a) =~(-a) =a. -(-(-a)) = -aby SPE
(b)' a*b = a*c implies a Yea.b = a toa-c Left Operation
implies 1+b = l.¢ Definition of Inverses
implies b =c¢ Definition of Multipli~

cative Identity
(¢) (x-a)(x=-Db)=(x+(-a))(x + (-b)) Definition of "-"

= (x + (-a))x + (x + (-a))(-b)
Distributive Property

-

~m
"
D
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x2 + (=2)x + (-b)x + (-a)(-b)

Distributive Property
3

- ax - bx + ab

Theorem 11(a), (e¢),
and Definition of "-"

X

(d) follows from (¢) when b = a.
L, Proofs:

'

(a) & < b implies a + b < 2b

implies _a__;-_b <b

- (b) a<oandb > o implies ab < bro
implies ab < o
(c) Note: Before assigning this exercise, you should
prove that 1 > O in an ordered field.
Indirect Proof: Suppose %: $ 0, then by Trichotemy

property either %: = 0, or%: < 0. Since o has no

multiplicative inverse in (F,°) % # 0. Suppose
1 < 0, then by 4(b) ebove, a+i < O which implies

1 < 0. This is & contradiction. Therefore % > 0.
5. Solution sets |
(2) {32 (@) o, 3

Qe (e) {-8, -9)
() {x%] (£) (-3, -2}
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Suggested Chapter Test

Determine which of the following statements are true and
which are false where a, b, ¢, d are any elements of a
field.
(a) a*b = 0 implies a = O.
(b) a+ (bee) = (a + ) (a +c).
(¢) =-(arb) = a*(-b).
() 1 # 0.
(e) -(a - Db) ==-a+hb,
(f) a°*b = a‘c implies b = c.
Determine which of the following statements are true and
which are false where a, b, ¢, d are any elements of an
ordered field.
(a) a%> 0
(b) -a<a
(¢) a > b implies ac > be
() a<band a<c implies b< ¢
Calculate standard names for each of the following in
(2455%5°).
(a) 9 . (@) (3-2H7 (o) -(87)
(v) -(7 - 8) ~ (a) -8B (£) 5 (7 - 10)
Prove: For all a, b, ¢ in field (F,+,*) if ¢ # 0, then

(a +b) s c=(a+c)+ (b+c).
Prove: For all a, b, ¢ in ordered field (F,+,+,<), if

a < b then there is ¢ » o in F such that a + ¢ = Db,
Find the solution set of each of the following open
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sentences where the domain of "x" is (Q,+,°).

(a)
()
(c)
(a)
(e)
(£)

7(x +2) = 8 =
72 - 3x =0
bx? -9 =0
x2 + 11x + 24 =

¥ - 6x=-U4=0
7Tx + 5< 3 - Ux

3

Answer Key for Chapter Test

1.

(a)
(v)
(e)
(a)
(e)
(£)
(a)
(v)
(e)
(a)

(b)
(e)
(d)
(e)
(£)

False
False
True
True

True

False (This would be true iff a # 0).

True
False
False

False

N F W 00 WU,
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4, a, b, c € (F,+,°) and c #£0
(a +b) = ¢ = (a+Db) - ¢ ' Definition of ":"
= (c-1)° (a + ) Commutativity for -

| = (c-u «a) + (c-’4 « b) Distributive Pro-
perty of « over + ‘

=2 (a ° c-l) + (b c-t) Commutativity for
2 (a+ c) + (b+ c) Definition of division
5. va, b, ce(F,+.,<)andac<b
a<b=a+(-a) <b+ (-a) Right Operation
% = ° < b+ (-a) Definition of Inverses
% et c =b + (-a)
Then a + ¢ =a + [b + (-a)] S PE

a + [(-a) + b] Commutativity for +

i

fa + (=a)] + b Associativity for +

= O + D Definition of inverses
= b Additive Identity
Then a + ¢ =D |
6. (a) {17}
(®) {0, 3}
() (x3)
(d) {'3: ‘8}
(e) {1, n}

. ' 2
(£) {x: x €Q and x < - 37}




- 154 -

Chapter 5
The Real Numbers

Time Estimate for chapter: 14 days

Part I of this chapter 1s designed to metivate the need to
extend the ordered field of rational numbers (Q, +, °, <) to the
complete ordered field of real numbers (R, +, °, <)o The motivation
is essentially geometrics that is, (Q, +, °, <) is shown to be
inadequate to express the length of every line segment, In

 order to overcome this inadequacy, the measuring process is
examined and 1s seen to produce a set of rational numbers, each
of which may be viewed as an approximation to the length of the
segment being measured, (One of these numbers may, indeed, be
the length.) Two important points emerge from the general
discussion:

1) The length of a line segment is the least upper bound

of the set of rational numbers which arises from the
measuring process,

2) Some sets of rational numbers arising from the measuring
process do not have rational least upper boundss
therufore, (R, +, °, <) is introduced as an extension
of (Q, +, °, <) so that every set of rational numbers
produced'by the measuring process willlhave i least
upper bound, In fact, the real number system (R, +, °, <)
i1s characterized more generally by the Completeness
Property:

Every non-empty set of real numbers which 1is

‘bounded from above has a least upper bound.

LRl s
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5,1 (Time: 2 days)

This seetion provides an algebrailc example, 1llustrating the
inadequacy of (Q, +, °) to solve all the equations we might
encounter, The proot that the solution set of x* = 2 1is empty
in (Q, +, °) depends upon the Unique Factorization Property (UFP)
of the natural numbers, Since this property was last covered in
Chapter 11 of Course I, & chapter which was read independently by
many students, it will have to be reviewed at this time, Have
students speculate about how the number of factors of a glven
prime p contained in the complete factorization of n 1s related
to the number of factors of p contained in the complete
factorization of n*., Include the possibility that n contains zero
| factors of p. Some students might be encouraged to read the more
standard proof that J§ is irrational which appears in last year's
experimental edition of Course II,:

The number of exercises in this chépter is absolutely minimal

b and most students should be expected to try each one,

5.2 Answers to Exercises

1, (a) 20 = 2% . 53 0 factors of 3

o ATV TR RSN

(20)* = 2¢ « 5%; 0 factors of 3
(b) 42 =23+ 7T; 1 factor of 3
(42)8 =20 « 3% o T8; 2 factors of 3
(e) 2250 = 2 « 3% « 5%; 2 factors of 3
(2250)% = 2% « 3¢ o 56; 4 factors of 3
(d) 270 =2 - 3* - 5; 3 factors of 3
(270)® =29 - 3¢ - 5%; 6 factors of 3
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(e) 891 = 3¢ - 11; 4 factors of 3

(891)® = 3¢ . 119; 8 factors of 3
There are twice as many factors of 3 in the complete
factorization into primes of n* as in n., Thus, n® must
contain an even number of factors of 3. This applies not

only to 3, but to any prime p.

2. (a) 1. Suppose (g)' =3, p, €2, q#0. Then g; = 3 and
pP? = 39®. p? contains an even number (possibly 0) of
factors of 3 in its complete factorization into primes.
Likewise, q® contains an even number (possibly 0) of
factors of 3. Thus, 3q® contains an odd number of factors
of 3. By the Unique Factorization Property, we camnnot
have p® = 3g®. Thus, there is no rational number whose
square is 3.

ii. Suppose (g)’ =5, pand q € Z, q A O. Then.g; = 5
or p? = 5q°. p? contalns an even number (possibly 0) of
factors of 5 in its complete factorization into primes.
Likewise, q® contains an even number (possibly 0) of
factors of 5 in its complete factorization. Then 5q°
contains an odd number of factors of 5. By the UFP, we
cannot have p? = 5q°. Thus, there is no fatipnal number
whose square is 5.

111, Suppose (g)’ =6, p, Q €2, QA 0. Then g; = 6 or
PP = 6q® = 2 - 3¢g°. Apply the same reasoning as in (1)

above.

(b) Suppose (£)* = 4 P, 4 €2, 40

ERIC then £ = 4 i
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then p? = 4q° = 29¢?

p*® contains an even numier of factors of 2.

qQ® contains an even number of factors of 2.

Thus 22q? contains an even number of factors of 2.
Thus p° = 4q°. Therefore the solution set of x* = 4

is in (Q, +, °)

3. (a) (+5, -5} - (b) (+5, -5} (e) {+15, -15}  (a) {0}
(e) #

b, (a) {1.4, 1.41) (v) f{1.41, 1.414) (e) {1.73, 1.732}
(a) {1.73, 1.732}

5.3 (Time: 1 day)

This section relies on the Pythagorean property which many
students are seeing for the first time. They should be reassured
that this relationship will be prowved in a subsequent chapter. 1In
this discussion, it becomes apparent that (Q, +, *) 1s not adequate
to satisfy all our geometrical needs; that is, we cannot express
the length of every line segment with & rational number once a
unit length has been selected. The importance of a unit length
must be stressed. For example, we might take the diagonal in
question and represent that by one unit. Thus, we would have a
rational number to express 1its length._ However, in terms of this
chosen unit, the length of a diagonal of a new square whose side
has this unit length would then not be a rational‘number.

The discussion of the measuring process may be difficultv to

understand with the assorted number of diagrams and possikilities

included. The ideas are easy; in fact, they are much easier to
O
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express orally than in writing, A set of rational numbers emerges
from measurement; tnis set may be finite or infinite. Let students
speculate about the consequences of these nhrossibilities. Remember
that if the process ends, the length is a rational number but

that the converse of this statement i1s not true. A segment may
have a rational length (%) while the measuring process applied to
the segment may produce an infinite set ({0, .3, .33, .333,...1}).
The student cannot really see, at this point, that the measuring
process may not end. A possible explanation is that 1f the process
does end, the length must be a rational number. However, we

already know that certain segments do not have rational lengths.

5.4 Answers to Exercises

1. (a) {6, 6.1}
6 segments each of length 1 cm.
1 segment of length f% cm,
(v) {o, 0.3, 0.32}
0 segments of length 1 cm.
3 segments eaclh of length f% cm,
2 segments each of length I%ﬁ cm,
() {47, 47.5, 47.50, 47.503}
47 segments each of length 1 cm,
5 segments each of length 1'16 cm,
0 segments of length T%E em,
3 segments each of length I&%ﬁﬁcm‘
(a) {2, 2.1, 2.15, 2.153, 2.1539, 2.15398}
2 segments each of length 1 cm.

1l segment of length f% em,
464
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5 segments each of length I%U cm,

kit i T O o o T

3 segments each of length 15%6 cm.
9 segments each of length 15!365 cm,
?

1l
8 segments each of length 155550 M-
2. (a) 3.728 or any other rational number greater than 3.728.

(b) 1 or any raticnal number greater than l.

i (e) 1.72 or any rational number x so that x 2_%%?.

(d) Any rational number.

i
; 3. (a) 3.728 (b) 1 (¢) 1%% (d) None exists at this
} time
4, (a) a =14 (b) b =24 (e¢) e=25 (d) None
(e) a=28

5. (a) {1, 2, 3} (b) {1, 2, 3,...33} (e) {1, 2, 3}
(a) {1, 2, 31

5.5 (Time: 2 days)

This section is extremely important. It introduces the
following definitions:

1. upper bound

2, least upper bound.

3. length of a line segment

Several examples of finite sets which arise from the measuring
process should be presented. In each case, the length is known
to be the largest rational number in the set. This number is
clearly the least upper bound of the set. Formal proofs for this
fact, though very easy, should not be presented. At this time,
we should not complicate something that students will see very

)
[]{1(j easily.
ZAUS | I [

4
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The important thing is to make a strong case for the least
upper bound as being a reasonable candidate for the length c¢f a
line segment. You will have to rely on the diagrams and discussion
of the measuring process to get this across. You might ask
students to speculate about the existence of a least upper bound
in (Q, +, *. <) for each set of rational numbers arising from the
measuring prqcess. The case of the diagonal of a sduare discussed
in Section 5.3 might allow some students to see that a rational
l.,u.b. does not always exist. What do they suggest be done to

overcome this difficulty?

5.6 Answers to Exercises

1. (a) Any rational number x so that x > &4
(b) Any rational number
{e) Any rational number x so that x > 1.9
(d) There is no upper bound
() {xeq: x>3)
() {(xeq: x>1)

2., (a) & (b) There is none (e) 1.9 (a) None

(e) Cannot say (f) None exists
3. (a) 2 () 3 (¢) 7.5  (a) 1.6668

4, (a) Irf A is bounded from above, there is an r ¢ Q so that
X {r for each x € A. Likewise, there is an r' € Q so
that x { r' for each x € B. Let p = max (r, r'). Then,
for each a € A U B, a { p. Thua, p is an upper bound
for A U B.

o  (b) Since A is bounded from above, there is an r € Q so that
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x{r for each Xx € A, But, if y € AN B, then ¥y €.A
and y < r. Thus, r is an upper bound of A N B.
Notice that the boundedness of B is not needed.

5. Let & € A. Since x is an upper bound of A, a £ Xx. But
x < y. Thus, by transitivity of "<", we have a { y. Thus,

y is an upper bound of A,

6. Since x and y are both least upper bounds, each 1s an upper'
bound. By definition of x being a l.u.b.; x{y. By
definition of y being a l.u.b., ¥y £ x. Thus, x =Y.

5.7 (Time: 1 day)

This section illustrates thé various significant cases which
might arise from the measuring process. The first case is very
easy and the student is probably convinced already that in the
finite case, the least upper bound is clearly the length. We
must honestly admit that we do not need any special process (1.u.p.)
to find the length of a line segment in the event that the measuring
process does end. The least upper bound is really needed in the
event that the measuring process produces an infinite set of
rational numbers, each approximating the length in question. The
sketch of the proof that § is the 1.u.b. of {0, 0.3, 0.33,...]
is a good introduction to a proof by induction. In fact, the
reason that this demonstration is called a gketch rather than a
proof is that a complete induction argument is not pfesented. The
sketch will be difficult for most students.

The student sees much more clearly now that for certain sets

o rational numbers arising from thi eeﬁsuring process, there are




T A e e g e e e s e 1+ e e e e o 1o

T AT

- 162 -

no rational least upper bounds. Ask the student again to guess
what can be done to overcome this problem. Also ask him why we

want each of these sets to have a least upper bound,

5.8 Answers to Exercises

1. (a) .3 (b) .33 (¢) .333  (q) %

2. (a) {1, 2, 3, 4, 5, 61 (b) {1, 2, 3,...661
(¢) {1, 2, 3, 4, 5, 6} (a) {1, 2, 3, 4, 5, 6}

| 3. o 0.6, 0,66

4, The length is a rational number. If the measuring process
produced the set (k, k-a,, k-aiaa,...k-a,aa...an}, then the

least upper bound would be k-aya3;...a_ which 18 a rational

number,
5. (a) .6 (b) .142857IF2857 (e) .222  (d) .475
(e) .l25

5.9 (Time: 2 days)

The real number system is introduced, in this development,
so that we can measure the length of every line segment. Thus,
every set of rational numbers arising from the measuring process
must have a least upper bound in (R, +, *, <). This conclusion
has been reasonably motivated in the previous sections of the
chapter and should not cause too much trouble for the student.
However, we jump to a more general, more powerful statement
rather quickly, as expressed by the Completeness Property:
| Every non-empty set of real numbers which is bounded from

above has a least upper bound. 1{‘5
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The Completeness Property is one of the essential differences
between the rationals and the reels and should receive considerable
emghasis. Do not expect students to grasp this quickly and they,
themselves, should be told that this property, though seemingly
simple in statement, expresses one of the most difficult
mathematical concepts. This is Jjust a first introduction to the

noticn of completeness; do not attempt to exhaust it.

5.10 Answers to Exercises

1. (a) W, Z, Q, R (b) W, 2, Q (e) W, 2, R (d) % 2, Q R

Y

2., (a) 4irrational (b) rational (c¢) neither (d) rational
(e) rational (f) irrational

3. Assume a . b is a rational number; that 1is, there are integers

P, q where q AOanda -+« b= g.
Since b is a non-zero rational number, there are integers e
and f where e A O and £ %# O and b = %.

.8 R - £
Thus, a F=q or a 6-q

Since e A0 and Q # 0, then e . @ # 0. This means that a is
a rational number. However, we were given that a is an
irrational number. Thus, our assumption is false and we

conclude that a « b is an irrational number.

4k, Consider x € R where x* = 2,
x is irrational, but x « x = x* = 2, Thus x * x is a rational
number. Also consider x? =2, y*® = 8 => x®y? = 16, (xy)? = 16,
xy = 4

d Ifxis a rational number, there are integers p and q where
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q A0 and x -»g. If y is a rational number, there are integers
= & .y <=L . 8_p- 18

a and b where b £ 0 and y = g+ Thus, x . ¥ = T°b-q D

Since q A0 and b A0, then q - b £ 0. We see that x - ¥y is

a rational number,

6. (a) .4139 (b) .3384888 ‘{e) the numbers are ejual
(a) .3644% (e) the numbers are equal

7. (a), (e), (e).

5.11 (Time: 2 days)

In general, two real numbers can be ordered in terms of their
infinite decimal representations in the usual way, by comparing
them digit by digit until they disagree., The modification of
this procedure for certain rational numbers 1s presented in tThis
section but not discussed at length. The teacher should be aware
that this modification 1s meant to accomodate rational number
decimal representations which have a bar "-" above a zero. (.2300).
In such a case, there are two distinct decimal representations for
the same number (.2300 and .2299). Since this is characteristic
only of certain rational numbers, perhaps it should have been
pointed out in Course I, Chapter 12 on the rational numbers.
Students should not think that the extension from (Q, +, +) to
(R, +, *) necessitated this modification. '

Because of the reordering of chapters, tl.e definition of

the square root of a number and the symbol ",/ " appear for the

first time in this chapter. Unfortunately, this'complicates
matters somewhat but consider ths following example as representative

of what we are trying to get across. _ 46

1) & = .2 if and only 1if 23 = 2,
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Assume 4 + 3./2 is & rational number; that is, say there -are

integers p and q where @ 4 0 and 4 + 3.2 = g.
Then, 3J§=§-4=R-a—ﬂorﬁ=%ﬂ.

But p - 4q and 3q are integers; since q £Z 0, then 3q # O.
This means that /2 is rational which we know is not true.
Thus, the assumption is false and we conclude that ¥ + 3,/2

is arnt irrational number.
(a) & (v) 5 (e} T (a) 1 (e) 12

(a) 1.4%2... (b) .333... or % (¢) 3.1815...
(d) 6.1616... (e) 1.783 (f) no least upper bound

() 3 () 2 ()5 (a3 ()6 (N
(8) 2 (n) O

(2) 2 -3 =6 (b) 4-2=28 (e) 9 - 6 =54

(d) 11 - 8 = 88 (e) 0-4=0 (f) 1-5=5

() =2 (n) 5=

Consider

8
2
b _, b

2 € Q. Since a > 0O and b > 0, then'a > 0.
a

There is a positive integer N such that N > §. Thus, Na > b.

Given x is a positive rational number. Let 1 be the other
rational number. By the hypotheses, there is a positive
integer N such that N - 1 > x. Thus N > x.

5.13 (Time: 3 days)

The purpose of this sectiog is to indicate that the field

properties of (F, . +, *, <) will help in understanding the arithmetic

necessary to handle the irrational numbers under various operations.

The student will also gailn some practice to develop the skills in

108
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2) .2 is the 1.u.b, of a set of rational approximations to
an element x in the set: {x:x € R and x® = 2},

3) By the Completeness Property, ./2 is a real number.

4) We name ¢ by using the approximations in this set. The
more approximations we take, the greater the accuracy
by representing ./2.

The Archimedean Property is steted in two seemingly different

forms in this section. The second form,

If a and b are positive feal numbers, there 1s a positive

integer N such that Na > b,

is probably less obvious than the first and should initiate more
discussion than th2 first. The geometrical interpretation in

terms of the iengths of line segments should be stressed. Point
out that we really made use of this property when describing the

measuring process. When we lay off a string of segnents each

- gORgruet to a unit segment, along a given line segment, how do we

know that we'll ever reach or pass the endpoint? It is the
Archimedean Property which guarantees that we will. In many of
the standard proofs involving the concept of 1limit, we rely on the
Aréhimedean Property to select N in terms of a given €. The

student will meet some of these situations at the end of Course III.

5.12 Answers to Exercises

1. 3.0222, 3.1847, 3.19999, 3.201
2. {2, 2.2, 2.23, 2.236, 2.2361,...) =C
If ¢ is lub of C then ¢ = 2.2361...

3. (a), (e)
109
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working with radical expressions.

Particular emphasis should be given to the "enticing
conjectures"” on page 259 and any others which the students or
teacher might bring uwp for discussion.

The text does not mention the process of rationalizing
radical denominators of fractions. The teacher should point out

that this procesé is accomplished with the identity property for

(¢) of (F, +. -, <). 1.e. :%-=fgl"£fg=°%

Following these kinds ¢f problems, the concept of éonjugates
should be discussed relative to rationalizing radical denominators
of fractions. The general property: Va, b (a + b)(a - b) =
a? - b? should be reviewed, The following type of problems could
then be discussed.

3+.2)(3-#2)=(9-2)=T7
(V& + B)(E - B) = (2 - 5) = (-3)
(35 - 26)(3/5 + 2/6) = (45 - 24) = (21)

This above concept can then be used in rationalizing radical

" denominators as in the following simplifications,
1 1 2 -
T+ BT+ .8 ° —‘:ga- =2-.3

10 10 2.3 - __20,5-50_20,@-20
B3 +5 2B +5 - (a3 -5)" 12 =25 =~ 13

The following exercises will give additionsl practice .in working
with radical expression. The teacher should decide whether this

additional practice 1is needed or not.

O
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Simplify each of the following radical expressions. The

e s g e e A S A

domain of each variable is the set of positive real numbers.

(Answers)
1) BT A
2) ST x/75 = /0
i 3) ‘/g %Jﬁ
5 §)  (-4,5E) (-2,63) 1688
5) \I-_i JE 25
6) 3.3
| 7) XY - SOy 2x8yt /15
j 0 mrE 25 - 2P
g 9) -3/5(2/15 - 4.5) -30/5 + 60
10) (2/3 + 5)(3/5 - 8) ' ~f5 - 22
| 11) (3 +5)(3 - J5) 4
Z 12) 3__1%5 30 -7105[2:
1B3) i 8(/T + \B)
14) H 2 -.f3

15) 224 ol

5.14 Answers to Exercises |

1. () 35 (b)) 26 (c) 2B (@) #B (o) 1
(1) (x-1) (2) 20fE () 28 (1) b2

oy (3) iz L)
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2. (a) J12 (o) JHHT () JABx* (d) JI300
(e) J20x7y? (£) HBFy  (g) +25a%0°

3. {% or 2 } 4 {5—1.2_% or 1"2—*'7%}
5. {7, -2} 6. 4 - 7. (25, -2/3)

8. ‘-232, - 4232! o 9. ({-5, -4" 10, (-9, 3}

11, {%5-} or {i@%’-—iﬁ} 12, (4, 8}

13, If a‘'and b are real numbers, a > O, b > 0O,

then <AE>3 ='AE..£ = N = &
VB NN NG

b

then % = %

then {% = :%

14, By counter example

Let a =16 and b = 9
J6 - f§ = 4 - 3 =1 4 /I6-9
15, If a, b are real numbers such that a, b > O
then (J&B)* = JE-J6- /&6 = (A)(/E) = ab
then .a - /b = .Jab
then .ab = .a/b.

5.16 Answers to Review Exercises

1. (a) 7 (b) 12 (e) 5 (d) 18

2. Assume there is a rational number g (p, q are integers, q £ 0)

such that g = T./. Then .2 = 7% Since q £ 0, 7q # 0. Thus,
179
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J2 1s rational. Since the assumption leads to a contradiction,

the assumption is false, Therefore, 7.2 1s 1rrational.

Suppose there is a rational number x so that x® = 17. This
means we can find integers p and qQ where q # 0 and (g)a = 17.
Squaring, we get g; = 17 or p® = 17q®. However, p? and q°
each contain an even number of factors of 17 in 1ts complete
factorization into primes. Thus, 17q° contains an odd number
of factors of 17 in its complete factorization. By the
Unique Factorization Principle, p® # 17q9®. Since the
assumption leads to a contradiction, the assumption is false
and we conclude that there is no rational number whose sQuare

is 17.

The solution set of the equation is empty if the domain of the

variable is Q.

(a) B cm, (b) .50 cm. (¢) 2 em. (a) .2a% cm.
8

2, 2.6, 2.64, 2,645

(a) None (b). Can't tell “(e) T.138 (d) None

(a) x where x € Q; x where x € R

(b) None exists in either case
(a) For each a € 8, 2> x.
(b) 1. x is a lower bound of S.
2, if b 1s any lower bound of S, then x > b.

9
(a) I3 (b) ¥B8 =2 (c) V35 (d) #B2 =2
173

(a) .11121  (b) No  (e) .12  (d) &
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(o) and (d)

The least upper bound of a finite set of rational numbers is

the largest number in the set. Thus, it must be rational.

Suggested Chapter Test

Prove that x® = T has an empty solution set in (Q, +, *) bY

using the Unique Factorization Property

Give an upper bound for the set of all rational numbers less

than ,/i. Is there a rational least upper bound?
Find 4 approximations to ,/10.

Find the least upper bound in Q of the following sets and

express it in the form of % b A O.
a) {.41, .4141, .41414T,...1%
b) (.1, .11, .111,...}
e) {.07, .077, .OTTT}

Find the greatest lower bound in Q for the set {x: x € Q and
x* £ 16}

What is the least upper bound of the set {x: x € Qand x2 < 42

Is the least upper bound of the set an element of the set?

Answer the same 2 questions for the greatest lower bound.
Prove that the set of natural numbers has no upper bound.

Simplify the following radical expressions,

(a) J2UX"y®
(v) l,gx;ay;:

() Y% +45 1
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(d) +2(3/3 - 5/18)
(e) (255 - JB)(3.5 + V3)

(£) m—f‘m

Find the solution set of each of the following equations in
(Q +, *)

(a) ¥®» +2x-3=0

(b) 7% + x® = 253

(e) x* +4 =9

Find the solution set of each of the following equations in
(Ry +, *)

(a) (5/2)x -3 =17

(b) 6/3+ 6x =18

(¢) 2x - (3/3)x =53

Answers to_Suggested Test Questions

1)

Proof: Assume there 1s an x € Q such tt ¢ x® = 7. Let x = g

]
where p, q are integers and q # 0. Then é’ = T3 then p? = 7q?;
p® contains an even number (possibly 0O) of factors of 7. q?
contains an even number (possibly 0) of factors of 7. Then

7q® contains an odd number of factors of 7.

Therefore p? # Tq°
Therefore the assumption that x® = 7 has a solution set in

(Q, +, *) is false,

An upper bound for this set 1is:
1,42 or 1.5 or 2, ete,

There is no rational least upper bound.
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3, 3.1, 3.16, 3.162.
fa)
(v)

(c) 0, 000
g.1.b. = (-4)

PF o

oip oip o
I

2, yes
-2, yes

Proof: Assume that N has an upper bound. Then, by the
Completeness Axiom, every non-empty set of R that has an upper
bound has a least upper bound in R, Let this least upper
bouhdbe L. Thenn <4 for alln € N; but n + 1 € N;
Therefore n + 1 £ 4; therefore n £ - 1.

This contradicts that £ is the least upper bound. Therefore
our assumption that N has an upper bound is false. Hence N

has no upper bound,

(a) Txy/Sxy
o e

(e) % or A@
(d) 3.6 - 30
(e) =/I5 - 27

(f) 6,/6 + 8/3

(a) {’3: 1}
(b) {-24, 243
(¢) 8
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10) (é) 13| o (202

(b) {3, -3}

(e) {"(4‘ »+2;.o
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Chapter 6
: Coordinate Geometry
Time Estimate for Chapter 19 - 23 days

The main objective of this chapter is that of uniting

; the real number system with axiomatic geometry. The

% realization of this overall goal is accomplished through

| a series of specific objectives:

1. extend the axiomatic geometry of Chapter 3 by the
addition of three new axioms, based primarily upon
the students' knowledge of the ruler and the real
number system.

2. relate the structure of real numbers to the structure

j of the line.

3. understand the nature of a line coordinate system and
system and related properties including betweeness of
points, division points, segments, rays and distances
on a line,

"4, extend this concept to a plane coordinate system and
properties with sets of points, particularly those

sets forming lines in the plane.

e e AT T I AR OISR 7 S TN 22 g v e

5. study the equation for a line in a plane with emphasis
on substitution, slope, parallel lines and intersecting

i lines.

6. use numbers, ordered pairs of numbers, equations and

inequalities as aids in the investigation of properties

of geometric figures.
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7. egain an understanding of basic properties of triangles
and parallelograms, concurrence of lines and other
various affine properties.

8. master the Pythagorean property of right triangles
within a plane rectangular coordinate system.

9. Finally, throughout the chapter, develop the ability
to formulate definitions and construct proofs based

upon the ordered field properties of real numbers.

6.1 Introduction (Time for 6.1, 6.2, 6.2 = 1 day)

This is & brief review of the axioms stated in Chapter 3
and should be assigned for reading at home before class
and/or serve as a basis for a series of questions initiating

the lesson centered about section 6.2.

6.2 Axiom 4: Uniqueness of Line Coordinate System

Starting with an unmarked line, students should be
called upon to draw various rulérs on the line; the eventual .
realization of this activity will be that the naming of any
2 points with coordinates taken from the Real number system

will determine the coordinates for all other points on the

.line. It is usual that the points taken are the 0 and I

polnts, matched with the real numbers 0 and 1 respectively,
forming the O, I-coordinate system. Please note order 1s
imperative: the 0,I-coordinate system # the I,0-coordinate

system.
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In establishing coordinate systems on a line, students
should realize that there are as many points on & line as
there are real numbers. Only under this assumption can
we set up a one-to-one correspondence.

In Section 6.3, problem No. 2 and parts of No. 3 lend
themselves to & development of the lesson. Some care

should be taken in clarifying the wording in No. 2b.

6.2 Exercises

1. 0, I, 5
. .‘.’ - ‘/
2a. < 1 :II l‘ 9 } v§" | ’n lbI Y
y Lyy | o -l -2 %
b. R o D S W
; 3. &. 2’ "l
b. -1, 2
c. 2,25%
d. 2, §.
1 2
ec 6, 3‘
4., a, False d. True g. True
b. True e. True h. False
c. True f. False

? 5. a. (1) The A, B-coordinate of A and B are O and 1

ut
|~

respectively. A, B-distance = [0 - 1|
: (2) The A, B-distance between B and A = |1 - O] =
§ ?'7{) (3) Let the A, B-coordinates of P and Q be p and q
| respectively. If P = Q, then p=q and
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Ip-a| = o.
If |p-a] =0, p=qand P = Q,
b. (1) Let the A, B-coordinate of S be s. -

|s-1] = 2]|s-0]
(2) 1f 0<s<1 Then 1-5 = 25 or s = & .
() If s<0<1 Then -s+l = -2s or s = -1

(4) The case 0<1<s is ruled out because then
S would be nearer B than it is to A.

6.4 Axiom 5: Relating Two Coordinate Systems on & Line
(Time: 6.4, 6.5 = 2 days)

The basic motivation of this lesson springs from the
standard ruler (the teacher msy wish to use a yafdstick for
demonstration purposes). Two basic coordinate systems are
identified in the process of measuring: one of inches and
one of feet. Each point is then assigned two coordinates,
one from each system.

The purpose of this section becomes apparent - to develop
methods of relating two coordinate systems by studying the
two coordinate names assigned to each point. From notions
of dilations (x~ax where a ¥ 0) and translations .

(x=x+ b), the relation from one coordinate system to another
is seen as a composite mapping (x~ax+b where a # 0).
From x“gx+b and x~x', the equation x!' = ax+b is

developed. In this sense, the yardstick first used

demonstrates the equation i = 12f (or x' = 12x+0) where

X== measure in feet and x! i = measure in inches.
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Practice in algebraic manipulations may be necessary beyond
the 2 day time estimation and, if this is the case, the teacher
: should provide review problems while continuing to teach the

material in sections to follow.

6.5 Exercises

T YR T ) B e Pt ST Y

1. a. 5 e. 8999 h. “/-I-Ig‘”—i
b. 11 £. 1000 1 1. %
% c. 3 g. ¥VI0 -1 3.
f d. -7
1 2. a. 4 | e. 1503 h. 21T - 3)
b. 5 £. 5994 1. 6
| c. 10 g. /T0 + 3 j. 2
d. =50
3, a. x'=x+3 f, x'=-x -1
b, X' =x-9 g. x' = %x -1
c. X' = =X h, x' =-2x + 4
d. x' =2x 1. %' =2x + 200
e. x' = 3x J. x' =2x - 36
b, a. y-= -%x + %
b, X = -3y + 2
5. &8. X = -2y +2 d. 2 =2x + 2
b, X = %z -1 e. Yy = -%x + 1
c. y = -%z + % P, 2z = Uy + 6
. F=59-C+32 e. (F=§F+32)=>(F=-uo)
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_ 5p _ 160 29 - - =
b. C = F - 3 f. (c+2o,-gc+32) => (C=-15) =>
(F=5)
c. 122; -4, 1832 g. Affine mapping

d. 10; -253; 1093%

7. Let x = A, B-coordinate of a point on Iﬁ'and y its
B, A-coordinate. Then x-coordinates of A and B are
O and 1 respectively, while y-coordinates of A and B
are 1 and O respectively.
Ify=8ax+b, 1=a «-0+béand0=2a-+1+D.
Therefore b = 1 and a = =1, and y = -x + 1. To find
the point where A, B-coordinate is equal to its B, A~

coordinate let y = x. This leads to x =y = %.

8. x' - distance PQ = |-5 - 3| = 8
X - distance PQ = |4 - 2] =2
The ratio of distances ;L = §-= % .

x!' = -Ux + 11,
a=-U4; |-4| = %
9. Since x' = ax + b connects A, B-coordinates to A', B' -
coordinates p' = ap + b and q' = aq + b. |
The A', B' - distance PQ = |p' - q'|
= |(ap+b) - (sq+b)| = |ep - aq| = a||p - al.
The A, B-distance PQ = |p - qj.
Therefore thie A', B'-distance PQ = |a|, the A, B-distance
.
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6.6 Segmgpts, Rays, Midpoints (Time: 6.6, 6.7 =2 - 2% days)

Although this section recalls basic geometric terms
previously studied, its main purpose is that of redefining these
ferms in the light of coordinate systems,

A critical definition is given for the property of betweeness,
a term known by students solely on an intuitive basis. From
"betweeness" springs a discussion and definition of a line segment,
endpoints, interior points and midpoints; all of these terms are
viewed as inequaiities or specific values on & line coordinate
system. Extension to the definition of a ray follows naturally.

Selected items from problems 1, 3 and 6 in Section 6.7
should be done in class befoie assigning homework., Students
might find the proofs in problem 10 difficult and challenging
but, once two or three are demonstrated in class, most of these
proofs should be within the grasp of many of the students.
Although these proofs may be omitted, the proofs in problems 7, 8
and 9 should be done.

6.7 Exercises

1. a. -1<x<1 f, x<1 J. -1<xK2
b, -1 <x<LK?2 g. x=0
=1
c. 1 5.3 £2 h. x =53 |
d. x> -1 1. 0<xK1
e. x<1
2. & 5% e. 0 g, V2T
1 5
b. 25 f.



-5z 8 o
2% h, 2.3
13 b. -19 c. -3 d. T -3

B 1s between A and C. c¢. L 1is between M and N.
R 1s between Pand Q. d. E is between D and F.

z=%—(3x-2)+1=%—&

BC or BD; ete. f. open half line DF

FEor FD? etc. (or ﬁ>- D).

P g. C% - C (or TE where C is
CE not included).

AE> h. AB - A - B (or EB where

points A and B are not

included).

X is in EB. Therefore the A, B-coordinate x of X

sa.tisfies the condition 0 ¢ x ¢ 1. Thus_ X > 0 and 1is

therefore in K§>

Let the A, B-coordinate of X be x and the A, B-coordi-

nate of Y ve y.

(1)
(2)
(3)
(4)
(5)
(6)

Then 0 < x <1 and 0 <y <1l.
Since X #Y, x #£y.
Either y > x or y < x.

Let y >x. Then 0 < x <y <1l.
If Z is a point in XV, then x < z<y.
Therefore 0 < z < 1 &and Z is in &S,

(Similar case for y < x).
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9. Theorem 2: If C is between P and Q, then PC + CQ = PQ
Proof: To show PC + CQ = PQ, demonstrate |p - c| +
le -a]l =lp=-al. lp~-cl+]c-~a|l=1{(-c)
+(c-a)=(p+-c)+(c+-a) =p+ (-c+ec)
+-q=p+0+-q=p+-g=p-q=|p-gq|.

1

*10. a. Q = midpoint of PR. So._lving %—:-R = 5 for q, we

Y
see q = %‘-(p + r).

trisection point of PR nearer P;

g-r2_1
b, ik implies Q

9-p_=2
F=p- 3 implies Q

trisection point of PR nearer R.

c. Since Q is an interior point of PR, we know that H
must be a fractional value less than 1.

Intuition teils us that m = 0 and n = 1.

Proof: Given m <H<n and @ between P and R,
then m = 0 and n = 1,

(1) Letm=0andn=1. Eitherp > rorp<r.
(2) p>r=> r - pis negative => (O<H<l) =>
(0>a-p>r-p)=>(p>a>r)=>Qq1is

between P and R.

(3) p<r=>(<FE<1)=>(0<a-p<r-p)
=> (p < 4 < r)=>Q is between P and R.

Alternate Proof':

(1) Either (p<a<r)or (p>q>r).

() (p<a<r)=>(0<a-p<r-p)=>(0<iL
<1l}y=>m=0andn =1,

(3) (e>a>r)=>(0>a-p>r-p)=>(0<34

Q . <1)=>m=0and n=1,
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Check: Let p = -2 and r = 8. Then (0 < =2<1 =

(o<§-—;—§{-§§-<1) => (o<9-1’5—2’<1) =>
(0<a+2<10)=>(-2<q<8)=>Q1s an
internal point of PR.
d. From part ¢, p= -2 and r = 8, Select q < -2, say
- q = -4, Then %—E—% 1%—5—%7?} T‘ = u NEGATIVE
value,
Proof: If P 1is between Q and R, then %—E—% <o0.
(1) Either g < p<rorq>p>r.
(2) (a<p<r)=>(a<pandp<r)=>(a-p<oO
and 0 < r - p) = %—:—% <.0.
(3) (@a>p>r)=>(a>peandp>r)=>(a-p>0
and 0 < r - p) => $=E <o.

e. Proof: If %“5‘% > 1, then R is between P and Q.

(1) Either p > ror p < r.

(2) (p>r) = (0>r-np).
(F=E>1) = (@a-p<r-p)=>(a<r).
(p>r)end (@< r)=>(p>r>a).

(3) (p<r)=>(0<r-np).

(F=5>1) =>(a-p>r-p)=>(a>r).
(p<r)end (a>r) => (p<r<a).
f. Given%-—_'—%
Let q' =aq + b; p' =ap + b; r' =ar + Db

-{lag +b) - (ap + Db aqg - ap _ g - 2
- p! ar + - (ap + ar - ap r -

g. To show 9———%-13 the P, R-coordinate of Q, let p =

Q | and r = 1,

LR
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Then %_5_% = %_5_%.=‘% = q = P, R-coordinate of Q.

Alternate Proof: Find the formule x' = ax + b that
converts p to O and r to 1, This is x' = %—E—%-as
can be checked with x = p and X = r. Then when

X = q, we get the P, R-coordinate of Q to be H

h. Proof (I): %-§-§-= 0 if and only if Q = P.
(1) F=5=0=>(a-p=0)=>(a=p)=>a="r

(2) (@=P) => (a=p) => (a-p=0)
Since P#R, p#randr -p#0
(@ -p=0)and (r-p#0) > (F=2=0).

Proof (II): 3-5—% = 1 if and only if Q = R.

r
(1) G=5=-1=>(@-p=r-p)=>(a=r)=
Q =R.
(2) (@ =R) => (a = r)
Since P#R, p#£randr-p#0
(@=r)=>(a-p=r-p) = F=L-1).

6.8 Axiom 6: Parallel Projections and Line Projections

(Time: 6.8, 6.9 = 1 - 13 days)

Although the wording of this last axiom might prove to be
cumbersome and confusing to some students, the concept is
reasonably simple. Essentielly, one line may be transformed to
a second line hy means of a parallel projection; Axiom 6 states

that parallel projections preserve coordinate systems.

The six axioms are restated at the end of this section to

153
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ald the students in proving statements found in section 6.9,

Certainly, at least two of these proofs should be demonstrated

in class before assigning the remaining exercises for homework.

6.9 Exercises

1.

Given B is between A and C.

By Axiom 4, let A and C correspond to O and 1 respectively.
Then A, C-coordinate of B is between 0 and 1.

By Axiom 5, let x' = ax + b where a =1 and b = 0 => x!

= X.

By Axiom 6, the A', C'-coordinate of B' is between O and

1.

Therefore, B' is between A' and C'.

Given B is the midpoint of AS.

The A, C-coordinate of B = %u

By Axiom 6, the A', C'-coordinate of B' = %
Therefore, B' is the midpoint of A'C'.

By definition, all A, C-coordinates x of AC’satisfy x > O.
By Axiom -6,-the A', C!'---coordinates of images of points —-
in<AT?= their A, C-coordinates. Thus X' = X.

X' > 0 implies ATCT is a ray.

Given B divides AG, from A to C, in the ratio r.
Let A, C-coordinate of B = 2= & _ p,

c - a
Then x' = § - :
By Axiom 6, the A', C'-coordinate of B! = 2 = b.

Therefore, B' divides E'C', from A to C. in the ratio r.

1£.9
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la -c| Jar -ct|
5. To prove ' ' ' ‘ » use Axiom 6 with the ‘A, B-
¢ -5 ¢! - bt

coordinates and A!', B'-coordinates equal.

|0 ~c] [o-ce}
Then le - 1] = ————  But A', B'-coordinate ¢ = c.
je' - 1|
Therefore, 1o - cf _ |0 - cl
le = 1]  Je -1

6. Consider the A, B-coordinate system where A =0, B= 1
and D = E-and the parallel projection from AB>to<AC>in
the direction of <ECX
By Axiom 6, the A, C-coordinate system (A = 0 and C = 1)
must take the image of D to %
Therefore, the line containing D and parallel to<§5>passes
through the midpoint of AC.
7. Under the A, B-coordinate system A = 0, B = 1 and D = =
and the parallel projection maps<ﬁﬁ>to<ﬁﬁ>in the direction
of<§5?

By Axiom 6, the A, C-coordinate system (A = 0 and C = 1)
. must take _the image of D to 1_“__"_“m

Therefore, the line containing D and parallel to<ﬁc
trisects AT hearer to A.

6.10 Plane Coordinate Systems (Time: 6.10, 6.11 = 1% - 2 days)

The purpose of this section is to extend, in a natural way,
what has been learned about line coordinate systems to the existence
and study of plane coordinate systems.

A plane coordinate system is determined by the intersection

506
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of two line coordinate systems. By calling the O, I-line
coordinate system the x-axis and the 0, J-line coordinate system
the y-axis, there is now formed the 0, I, J-plane coordinate
system. Again, order is imperative: O, I, J-coordinate system
#0, J, I - coordinate system.

It should be noted that the distance from O to I need not
equal the distance from O to J and that the x and y axes need
not be perpendicular.

The teacher should have various students graphing the same
sets on the board at the same time to show a variety of plane
coordinate systems whose conditions, once graphed, appear to be
different but are equivalent. (See Section 6.11, No. 9 for

examples).

6.11 Exercises

1. All points on the y-axls have O as thelr x-coordinate,

and the y-coordinate can be any resl number.

2. All these points are on the x-axis and only those whose

e e e x-coordinates.-are-negative. --The -set-of points-forms-an. . -..

open half-line.

3. a. (P(x,y) | x
b. {P(x,y) | x
c. {P(x,y) | x

0}. d. {(P(x,y) | x <0 and y > 0}.
0,y >0} e. {(P(x,y)|x<0 and y<O]
0and y <0} f£. {P(x,y)|x>0 and y<0}.

4. a. For any point on 4, there is only one line containing
that point and parallel to <0J7? and th“at line is ¢
itself. Therefore all points of ¢ have 1 as x-

Q coordinate. Conversely, if a point has 1 as
i
j01

R
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le -¢} Ja' -c']

le = bl fe' - b

5. To .prove , use Axiom 6 with the ‘A, B-

coordinates and At!, B'-coordinates equal.

[0 -c] |0-e'|

Then = ——— But A', B'-coordinate ¢ = ¢,
le - 1] let - 1}
Therefore, [0 - cf _ [0 - cf
le =11 |e - 1]

6. Consider the A, B-coordinate system where A = 0, B= 1
and D = % and the parallel projection £rom<AB to<AC” in
the direction of<BUOZ

By Axiom 6, the A, C-coordinate system (A = O and C = 1)
must take the image of D to %
Therefore, the line containing D and parallel to<§6>passes
through the midpoint of AG. '

7. Under the A, B-coordinate system A = 0, B = 1 and D = %-

and the parallel projection maps<§§>to<55>in the direction

of<§ﬁ?

By Axiom 6, the A, C-coordinate system (A = 0 and C = 1)
— must take. the image of D to %-

Therefore, the line containing D and parallel to 66~
trisects AT hearer to A.

6.10 Plane Coordinate Systems (Time: 6.10, 6.11 = l% - 2 days)
§ -

The purpose. of thiQ section 1s to extend, 1d a natural way,

what has been léarned about line coordinate systems to the existence
and study of plsne coordinate systems.

A plane co@?dinate system is determlined by the intersection

109
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of two line coordinate systems. By calling the O, I-line
coordinate system the x-axis and the 0, J-line coordinate system
the y-axis, there is now formed the O, I, J-plane coordinate
system. Again, order is imperative: O, I, J-coordinate system
£ 0, J, T ~ coordinate system.

It should be noted that the distance from O to I need not
equal the distance from O to J and that the x and y axes need
not be perpendicular.

The teacher should have various students graphing the same
sets on the board at the same time to show a varlety of plane
coordinate systems whose conditions, once graphed, appear to be
different but are equivalent. (See Section 6.11, No. 9 for

examples).

6.11 Exercises

1. All points on the y-axis have O as thelr x-coordinate,

and the y-coordinate can be any real number.

2. All these points are on the x-axis and only those whose
x-coordinates are negative. The set of points forms an

open half-line.

W
L]

a. [P(X:Y) | X
b. (P(x,y) | x
c. (P(x,y) | x

o). 4. (P(x,y) | x < 0andy >O0].
0, y >0} e. [P(x,y)lx(b and y<0}
0and y <0} f£. (P(x,y)|x>0 and y<0}.

4. a. For any point on ¢, there 1s only one 1line containing
that polint and parallel to<63?’and that line is ¢
itself. Therefore all points of £ have 1 as x-

coordinate. Conversely, if a point has 1 as

169
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X-coordinate, it must be on £; otherwise its
x-coordinate is not 1. 2 = {P(x,y) | x = 1}.
b. m=(P(x,y) | y =1},
c. ¢Nm=(P(x,y) | x=1and y = 1}.

5. There is exactly one point in<af>whose 0, I-coordinate
is a, call it A. There is exactly one line through A
parallel to OJ? call it £4. Similarly, there is

<5T>whose 0, J-coordinate is b,

exactly one point in

call it B. And there is exactly one line through B
L

parallel to UI? call it m. £ N m contains exactly one

point, and this is the point whose coordinates-are

(e, b).
6. a. (P(x,y) | y = 4]
b. (P(x,y) | x = 3}

¢c. P has the coordinates (3, 4). Let B have coordinates
(3, 5) and C have coordinates (4, 4). Then the set
(Q(x,y) | y > 4 and x > 4} is the interior of <BPC.
d. Using the points P, C and D(3, 3)

{(R(x,¥) | y < 4 and x > 0} = <DEC -
7. a. [(P(xyy)ly = 2)
b. {(P(x,y)|x = =3}
8. a. (P(x,y)|y = -5}
b. (P(x,y)|x = -4}.

104
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The x-coordinates of points on L are the 0, I-coordinates of
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points on<6I>acquired under the parallel projection f

from & to<0T”in the direction of<OJ> By Axiom 6, if

0 £ 0! and 1 f I' then the x-coordinate of

any point on £ is the 0', I'~coordinate of that point.
Hence the correspondence between x-coordinates of polnts
of ¢ and thelr points is a coordinate system-namely the

coordinate cyvstem with base (0', I').

6.12 An Equation for a Line (Time: 6.12, 6.13 = 2 days)

The purpose of this section is that of gaining skill in
describing sets of points in the plane that form straight lines
by means of equations. Since students have had experience with
equations for linés that were parallel to one of the axes, the
main concern here will be with equations of the form &x + by + ¢
= 0 where. & £ 0 and b # 0 (lines that intersect both axes).

The main approach taken is that of substitution. 1In
section 6.15, the concept of slope and the slope-point form of
the equation are introduced via exercilses,and the teacher 1is

referred to the Teachers Commentary for section 6.14,

Since the claim 1s made that every line in the plane can
be described by the equation ax + by + ¢ = 0, exercise no. 2 in
section 6.13 is important. Exercises nos. 6, 7, 8 and 9 are
essential; selection may be made from the remaining exercises

in section 6.13.

6.13 Exercises

1. a. A is a point of ¢ b. B is c. C is not

A A Ay
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g. G 1is h, H is not i. K is not
j. L 1is k. Mlis 1. N is

2. ¢, 4, e end £ can be equations for lines.

3. a8, y = =3x+5 d. y = %
b, y=-3x+ 8 e. y==2x+8
c. not possible ' f. y= -%x * %

4, Thexre are an infinite number of correct answers for
each. We select one pelr arbitrarily for each,
a. P(0, 2) is on the line Q(1, 2) *s not.
b. P(6, 0) is on the line Q(6, 1) is not.
c. P(4, 0) is on the line Q(4, 1) is not.
d. P(9%, 8) is on the 1line @(9, 8) is not.
e. P(8, 0) is on the line Q(8, 1) is not.
£f. P12, 435 is on the line Q(12, 2) is not.

5. &. Does contain, f. Does k. Does not
b. Does g. Does not. 1. Does not
c. Does h. Does
d. Do#s not 1. Does
e. Does not J. Doetg not

6. Note that the coordinates of p are (0, 0), of I are (1, 0),
of J are (0, 1).

e. O a. O g. O
b, J e. I h. 0, J
c. I £f. J
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7. Any equation equivalent to those listed for each part

is acceptable,

a. y=0 e. X -Uy+2=0

b, x -y -2=0 f. y= -2x + 22

c. x+y=256 . y=%x-3

d. x+y=290 h. 3y =65x + 15
8. a. y =0 b. x=0 e, x+y=1
9. a. OI = (P({x,y)]y =0 and 0 < x <1}

b. 0F = {P(x,y) | x=0and 0 <y <1}

c. IT=(P(x,y) | x+y=1,0<x<1}

10. (3 0), (0, 3, & .
11. a. (2, 1) d. (2, -2%-)
b. (4, 2) e. (0, 0)
c. (-1, 4) £. (3 -F)
1

6.14 Intersection of Lines (Time: 6.14, 6.15 = 25 to 3 days)

The purpose of this section is to solve systems involving
pairs of linear equations. Cases involving the intersection of
one point and the null intersection are studied. The teacher
may wish to men}icn the situation where the equations are dependent
(2x +y =5 anélux + 2y = 10) thus resulting in an intersection
that includes an infinite set of points ({{x,y) | x = k end y =
5 - 2k, k € Real numbers}).

In section 6,15, problems 5, 6, 7, 8 introduce and develop

the concept of the slope of a line and the point-slope form of

an equation. The teacher should feel free to develop this

material in class or to provide additional lessons concerning

100
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slope. Experience has shown that teacher explanation and class
time are necessary in this area.

In studying parallel lines given in the form of equations

(X = ax + band y = ax + c), the teacher should attempt to bring
the following notions into a classroom discussion:

1. If b # c, the lines will be parallel such that their
intersection is empty.

2. Ifb =c¢, the lines will be dependent. Since both
equations are equal, only one line is described. The
intersection will be the line itself. Parallelism must
still hold to maintain an equivalence relation; certainly
parallelism is reflexive and every line must be parallel
to itself,

3. Equations of the form y = ax + b can be readily derived
from equations in the point-slope form.

Ex: Let ¢ contain points (3, 5) and (4, 7) and let
any point on the line ¢ be given by the general

coordinates (x, y).

-5_717-5
X - -3
%—E-%—: % NOTE: slope = %'= 2
y -5 =2(x-3)
y~-5=2x -6
y=2x -1

Comparing y = 2x - 1 to the general form y
ax + b, we see that "a" is the slope of the

equation.
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Lk, An investigation of "b" as the y-intercept in the
equation y = ax + b is optional. Students may discover
this and bring i1t to the attentlon of the teacher and
the class. However, a grasp of the point-slope form
seems to be of greater conceptual value than the
slope~intercept method.

5. The parallel postulate should be investigated and students
should be given problems of the type, "Given line £ and
point P, find the equation of the line parallel to & and
containing P."

Ex: Let ¢ = {(x,y) | ¥y = 3x - 2}. Find the equation

for line k where k || £ and point (3, 5) € k.
Since y =3x - 2 has & slope of 3 and k || 4,
we get (y = ax +b) => (y = 3x + b) for line k.
By substituting, (y = 3x +b) => (5 = 3°3 + b)
=> (-4 = b).
s k has an equation y = 3x - 4,

NOTE: (See Section 3.9, problem 3)

6. The same situation should be studied by the po‘nt-slope
form: Taking the general point (x, y}), point P (3, 5)
and the slope of y = 3x - 2 as 3, we get

(*‘XLE—g-=3)=> (y -5 =3(x-3)) => (v =3x - 4).

Of course, students should not be expected to master the
solution of simultaneous equations by various methods within a
3 day span,and the teacher should provide problems to allow for

practice in algebraic manipulations while continuing to teach

ERIC v
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material in the sections that follow, A natural reenforcement
of these concepts does occur in sections 6.16, 6.18 and 6.20 but
many of the proofs depend upon an expertise with the solution of

pairs of linear equations.

6.15 Exercises

1. a. (8, 3) e. (3, 0)
b. none £. (3, &)
c. (2, 6) g. (-3, 59
d. (%s 3) h. none
<?ﬂ?'has equation y = iﬂfchas equation x + y = 1;
<33>has equation y = %x + 1; < >has equation y = 0;
<IA>has equation y = 2x - 2; <OJ>has equation x = 0.

a. The solution of (y = X and x + ¥y 1) is (gv %)

b. The solution of y = —x +1eand y = 0) is (-2, G).

¢. The solution of (y = 2x - 2 and x = 0) is (0, -2)

3. An equation for AB is y = %x + %. (-3, ~1) satisfies
this equation. Therefore C is on“AB:
L, a. An equation for AB>*s y=2x -5, (-2, -9)

satisfies this equation. Therefore ¢ is on <AB>

b. An equation for<DE>is y = -2x + 8. (3, 1) does not
satisfy this equation. Therefore D, E, F are not
collinear.

¢c. An equation for<

KI’is y = x. It is satisfied by M.
Therefore K, L, M are collineer.

d. The conditions &8 #0, b #0 tell us that P, @, R are
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distinct. An equation £or<PR’ is x + y = 0, Which

is satisfied vy (0, 0). The points are collinear.
Alternate: An equation for<Fq” is y =«~§x, which is

satisfied by point R : { -a, b). The points are

collinear.

Xx =1 o0 1 2 3
y 5 =3 -1 1 3

(2: 1) end (xgs y2) = (3: 3)

for (xl, yl)

Yoo N1 _3-1_2_,
Xy= Xy 3 -2 1"
for (xl, yl) = ('1, '5) and (X2, y2) = (O, '3)
Yo TV 3-(5) .2 _,
X, - X T T o-(-1) 1 -

The results are the same. Yes.

b. For (xl, yl) = (p, 2p-3) and Xps y2) = (q, 29-3)

Y2 71 _ (29-3) - (2p-3) _2gq-7p 2§q-2; -5

The sentence completion is:

Yo%y
X2 -Xl
c. For (xl, yl) = (xl, ax, + b), and (x2, y2) =

2.

(x2, ax, + b):

Yo=Yy . (ax2 +b) - (axl+ b) ) 8x,-ax, )
XomXq X = X Xo%q
f(x2-xl) - &
lxg-xlj - .
d. 5; -2; 0; 1
E’.
) a0
v~ K,f}
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e. The lines are parallel if their ¢quations have no
solution or the lines eare parallel if the equstions
sre equivalent. (y=ex+b and y=ex+e) have s

solution if there exists x for which
ax+b = 8x+C, or b=c., If b £ ¢ there is no solution.

If b = ¢, the equations are equivalent and the lines
sre the ssme. In either case the lines are parallel.
5. Slope of m is %{%'= ~1. Using the point-slope form with
(xl, yl) = (6, 2) we get y - 2 = -1{(x - 5).
Any equivelent equation to this is acceptable.

7. a. :%—Ei%gl = 1%

b. Sterting with slope = -5 end using (xl, yl) = (1, -2)

y +2 = -%(x -1l or3x +2y + 1 =o.

c. (3:20+2y+1=0)=>(y-= _30%)
d. (3X+2-8+1 =0 => (x =_5§.

8. x = -2 is an equation for & line with no slope.
y = 3 1s an equation for a line with zero slope.

6.16 Triengles and Quadrilatersls (Time: /.16, 6.17 = 1-21- - 2 days)

dere, prnof is the keystone in examining vsrious properties

of triangles and quadrilsterals (primarily parallelograms). The

basis for these proofs is the plane coordinate system and the

properties discovered or defined with regerd to linesr equations.
The median of a triangle is introduced and defined. Note

that the ratio ?2:3 described in the text is the ratio AG:AE where

AE is a median and G is the point at which the 2 medians of the

triangle meet. (See Figure 6.22 in text). It is not
974!
20A
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uncommon to state that the medians of a triangle intersect to
form segments that are in & 2:1 ratio. Then, using the example.
shown, AG:GE = 2:1.

At least 2 of the proofs to be found in section 6.17 should
e demonstrated in class before assigning the remaining proofs

for homework. Problem 2 would be excellent ir this regard.

6.17 Exercises

1. a) Let the triangle be ABC and (A, B, C)
as the base of a plane coordinate
systeia.

b) The midpoint of AC is P(O, 32[-) and

the midpoint of BT os Q(%, 2). ¢(2"
¢) <PPhus the equation y = %‘- P~ a(%, "i.)
d) <AB’has the equation y = O.
o) T = ¢ A,0) 8 (L)

f) NY:g \,‘.<—136.>.

2., Let the triangle be ABC and take (A, B, C) as
vase. P(0, %) is the midpoint of AC.
An equation of %, the line that contains
P and is parallel to<7\'?is y = %1 cle,

<572 =
An equation for BC = x + y =1. p(vfg/\‘l“ﬁ“‘).
L, -, v

L 02 = (a3 3. / \

Q is the midpoint of BC A2, 9 8(1,%

4 passes through the midpoint of EC.

205
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3. (a) Given BD:DA = 2:1 and D2}

CE:EA = 2:1

<

Prove ?15 il P,C>
¢y, 0

1. Take (B, C, A) as base given coordinates as

indicated for B, C and A.
2. By ratio, D 1is g- of the way from B to A and'

E is §- of the way from C to A, producing
2 z
D(0, %) and E(Z, ).

3. “PP>has equation y = %
<Bt”has equation y = 0. alo,0)
4. <DF”||<BG2
(v) Given above and BE N CD = (F} pl> EH"'%)
Prove BF:FE = CF:FD = 3:1 F

1. <BF’has equation y = 2x.
2. <tPhas equation 2x + 3y = 2

- - 2
eron G2 - 59 > L= 40 =

(-y = §(x - 1)) => (3y = 2(x - 1)) =>
(-3y =2x - 2) => (2 = 2x + 3y)]
3. BP0 D= (F(gs 5))
4, Comparing lengths by distance formula, taking

Blo,0) (L)

Xx-coordinates only

1 y
elo-gl-5s Eolz-3l-ip-pl -
5. Then BF:FE = % : 5 = 35 ¢ 15 = 31
6. Similarly, CF = |1 - 3| =35 FD = |f-0] = .
Q 7. ThenCF:FD=13I:1]f=3:1.
one
“Tﬁ}i'{}
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4, Given A, B, D-coordinate of C is (1, 1).

Prcve: AEBCD is a parallelogram.

BloY) (LY
a) Equation for<EDYis x = 0; /
forBCis x = 1. //
Then“AD || TC2 to,o)A/ 4( Lo

b) Equaticn for<AB’1is y = 0; for<DC~is vy = 1. Then
<K§>“<m?

c) Since opposite sides are ||, ABCD is & parallelogram.

5. Given: AC and BD bisect each other.

Prove: ABCD is a parallelogram Do 0(59
a) Let base be (A, B, D) and i

assign coordinates to A(0, 0); J‘”)

B{1l, 0) and D(0, 1). (e.9A 81,9
b) 8ince BD is bisected, E is midpoint. Then E has

coordinates (%‘-, %—) .

¢) Equation forNAR is x = y.
d) Since AC 1is bisected at E, AE = EC. Let C be (x, y)
e} Using only x-coordinates, where AE = EC, we get
1 1 1 1
|o_§,| = |5 - x| or -2-=|2--x| or x =1
f) Using y-coordinates where AE = EC, we get

1

1 1
lo -3l =1l5-yl ory
g) Since C has coordinates (1, 1), we know by problem

4 that ABCD is a parallelogram.
d plow  Fl3) ¢y

6. Given: parallelogram ABCD where
E is midpoint of AB and
F is midpoint of IC.

O rivy

Prove: AECF is & parallelogram. Mo, E(L o B(,v
>



a) Let (&, B, D) be base and assign coordinates to

A, B, C, D.

1
E’
c) Equation for s y = 2X; equation for EC is

b) By midpoints, E has coordinates (%, 0) and F(%, 1).
y = 2x - ll )
« - .
d) Since slopes of AF and EC are equal, AF || EC.
- .
e) Since D2 || AB from the given, we know FC I 53
£) Then, with opposite sides !, AECF is a parallelogram.

7. Given: data from no. € and
AF N BB = (@}
Prove: AG:GF = 2:1
a) Equation for $8 1s x + y = 1;
equation for Kﬁ isy =2x
v) f2nfB- [G(gu 3
¢) Using the x-coordinates for A, G, F as O, %, %3 we

get

aoicr = lo -3l i I5-3l =3 153l =35+
'

%:%—=2 : 1. G(%)%)c(“‘b)

8. Given: ABCD is a quadrilateral
with midpoints as
listed in diagram. A

Prove: EFGH is & parallelogram E(+.0) 8(1,0)
if it is a quadrilateral.

Take (A, B, D) as base of a coordinate system and let
C have coordinstes (a, b). The midpoint E of AB hes

coordinates (%, 0).
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The midpoint F of BC has coordinates (E—g—l, %).

The midpoint of G of TD has coordinates (25 9_5_1).

The midpoint H of DE has coordinates (0, %).

The nidpoint of EG has coordinates (2 Z l, b+ l).

g
, a+1 b+1
The midpoint of FH has coordinates ( T —T ).

Therefore EG and FH bisect each other. By Exercise 5
EFGH, if it is a quadrilateral, it is a parcllelogram.

Note.

In order to show a figure is a parallelogram, we must first
show it is a quadrilateral. (See definition of parallelogram).
To do so here we would have to show that E, F, G, H are

four points, no three of which are collinear, that

EFNGH = §, and FG N EH = ¢. (See definition of
quadrilateral). But this was not asked for in this

problem.

6.18 The Pythagorean Property (Time: 6.18, 6.19 = l% - 2 days)

The teacher should note that this topic is not developed

rigorously in this Chapter. Any attempt to do so within the

system defined by the six axioms faces difficulties which we

cannot expect pupils to overcome. There are two major difficulties
(and & number of minor ones). The first is to define a
perpendicularity relation for lines. A perpendicularity relation
may be defined as follows (patterned after Modern Coordinate

Geometry, Part 1, page 263).

£}{U:¢)Q() Definition. A perpendicularity relation in an affine plane
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is any relation (denoted by | and read “is

perpendicular to") between two lines in the

plane such that

(1) for no line £ is £ | .

(i1) if 2 | m, thenm | 2.

(11i) 1if P is a point in the plane and ¢ is a
line; there is one and only one line m

in the plane containing P for which
m| 2.

With these properties of a perpendicularity relation one

may then prove the following basic theorems for lines in the plane.

1.
2.
3.
]}

If 8, | m and 2, | m, then 8, || 2,.

If £, | mand % || 85, then £, | m.

If &, | %, then it is not true that 2, || 2,.

If 8, || my and 25 || mg, then 2, | £, if and only if m, | m,.

The second major difficulty is to define a function, 4,

which serves to yield distances on different lines that are

comparable, A function that has the following properties would

be suitable.

(1) d is defined on all ordered pairs of points of the
plane.

(2) On any line in the plane d is a linear distance
function.

(2) Any parallel projection from a line to a parallel
line preserves d.

(4) The Pythagorean property holds.

I 3

210

¥



- 206 -

Having defined d and | there is still the problem of proving
that these can be introduced into a plane coordinate system.
This is a most vexing problem for it can be shown that any plane
coordinate system {no matter how the axes are taken) can be
transformed info a rectangular coordinate system. For a proof
of this assertion see Modern Coordinate Geometry Section 7.5.

The students should have some practice with selected
problems from exercises 1, 2, 3 and 4 from section 6.19 before

assigning homework,

6.19 Exercises

1. &a. 5 d. 12
b. 17 e. 24
c. 6 | f. 24
2, a, 2 e. 2T i. 43
b, «5 f. ~OT
c. ~3F g. 4
a. ~7 h, 1 |
3, a., 5§ e. 13 e. 58
b, 5 d. ~Bor &% f. N5
4, a. {0, 8) c. (0, NB) or (0, V?)
b. (0, 5) d. (0, ~¥I08) or (0, &3)
5. 8. x =8, y=25 b. y =15, x = 17

6.20 Plane Rectangular Coordinate Systems

(Time: 6.20, 6.21 = 2-3 days)

j£]{l(i Using a plane coord15?¢ system with base (0, I, J),

._ _”1
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restrictions are made to define a rectangular coordinate
system: a. & I &

b, 0I =0J =1

The importance of this system comes in the development of
the distance formula for any 2 points in the pléne given by
coordinates (%,, ¥y, ) and (X4, ¥a):

D = distance =N(X, - X3)® + (y3 - Ya)2.

The relation between this formula and the Pythagorean property

c =48 + b? should be clear and should demonstrate the need for

the rectangular coordinate system.

6.21 Exercises

1. a, AB=5 e. RS =~I0 i. EF =43a% + ©°

b, CD=5 f. T =0 j. GH = |b - c|

c. EF =5 g. AB =125 k. KL = |a - c|

d. PQ =4 h. CD =v1IF 1. MN =~T{a-c)®+(b-d)*
2. a, AB =452 = BC d. AB =~20 = BC

b. AB =+/50 = BC e. AB =410 = AC

c. AC =485 = BC
3, C has coordinates (3, 4). AC =+/3T ¥+ 47 = BD
4, a. Midpoint D of AB has coordinates (3, 4).

D =3 F U7 = 5, AB =B% ¥ B¥ = 10 . CD = 24B.
b. D has coordinates (6, g-).

0D = VBT (2T =vI T g = 1913

AB =122

AB =12% + 57 = 13

< CD = %‘-AB;
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d. half the length of the hypotenuse.

5. The midpoint D of AB has coordinates (2, 3).
The midpoint E of CE has coordinates (-2, 3).
AE = 6% + 3%, 0D = 6% + 37 < AE = CD

slope of CD ;.Xﬁ I 53
slope of AD - Bt | 0.
< ABCD is a parallelogram.

AB =+3" + 27 = CD, BC =+T% + I® = DA.

6. Slope of K§ =

R LY

Slope c¢f §3 =

' Substituting the distances for AB, AC, and BC in
(AB)® = (AC)® + (BC)? we get
b? + a? = c? + a® + c® - 2¢b + b® which is equivalent to
0 = 2¢c? - 2¢b = 2¢(c - b).
This implies that either ¢ = O or c - b = 0. The
latter implies ¢ = b or C = B and we do not have the
triangle ABC that was given. Hence ¢ = 0 or C = D and

LACB is a right angle.

8. The numbers that can be sides of a right triangle are

in a. (hypotenuse length = 25)
b. (hypotenuse length = 25)
c. (hypotenuse length = 7)
f. (hypotenuse length = 4)
h. (hypotenuse length = 41)
i. (hypotenuse length = 5a},

6.22 Summary

Assign for student reading.

213
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6.23 Review Exercises

a, y=5x+2 b, y=2x -8
a. x = %y - % b, x = %Y + 4
a. {P(x) | -2 <x<1)

b. {P(x) | x > -2}

c. {(P(x) | x<g1}

d. (P(x) | x is any real number).

e. [(P(x) | -1<x<0)}

f. {pP(x) | -2 < x<0J}.

g. [2(x) | x> -2}

h. {P(x) | x = 0}

i. ¢

J. (P(x) | x = ),
k. {(P(x) | x = -%]

We can prove that B divides AT, from A to C, in the same
ratio as E divides DF, from D to F, if we can show that
the A, C-coordinate of B is equal to the D, F-coordinate
Ly, ¢ —2£>F. s
follows directly from Axiom 6. To prove that C' divides

of E. Since A —%> D, B

Bi, from B to A, in the same ratio as F divides ED from
E to D, use the B, A~ and E, D-coordinate systems and

Axiom 6.
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d)

c)
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a, y=2 c. y=X e. 2x+3y = 6
b. x = -2 d. x+y=0 f. y=-§x-2

a. Midpoint of AB has coordinates (J‘Tl, 2). Slope of
o .
AB = 0.
b. Midpoint of DE has coordinates (0, 0). Slope of
™ =1,
¢. Midpoint of KL has coordinates (-1, %‘-). Slope of
o 5
KL = "?o
Using (A, B, C) as base of a coordinate system, D has
)
coordinates (%, %‘-) and E has coordinates (?]"-, 0). AD has
oy
equation (1) y = x. CE has equation (2). 3x +y = 1,
Solving (1) and (2), we get point intersection P(-Z‘r, llI)°
The x-coordinates of A, P, and D, namely O, ljf, -21-

are evidence that P bisects AD.

Using (A, B, C) as base of a coordinate system, 1) D has
coordinates (%—, 0) and F has coordinates (ljf, %). An
equation for ﬁ is (1)y = 2x. An equation for & 1s
(2)x + y =1, Solving (1) and (2) gives F(%‘-, %—). The
x~-coordinates of C, F, B, namely, O, %‘-, 1 show CF:FB =
1l:2,

Using (A, B, D) as wase, C has coordinates (1, 1), E has
coordinates (g—, 0) and F has coordinates (%—, 1). Slope
of iF = 3. Siope of ¥ = 3. Therefore §2 || £¢ and AECF
is a parallelogram. Thus AC and FE bisect each o‘ther,
that is, have a common midpoint. But DB and AC also have
a common midpoint. Therefore AC, BD, and FE meet in a

'3}

A~

-
Sp
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point.
11. &a. AB =50 c. AC =439
b. AB =13 d. BC =«TIT.
12, a. AB =6 c. EF =5
b. CD = 16 d. GH =125
13. Using the rectangular 1\
coordinate system, 1 ﬁ; e
indicated at the right, 1 ',
the flnal position D 3 I ; —

has coordinates (5, 2).

AD =~25 + [ =4/29 miles.

14, The midpoint of AT has coordinates (4, 3).
The midpoint of BD has coordinates (4, 3)
s ABCD 1s a parallelogram.
E has coordinates (1, 2); F has coordinates (5, 5); G
has coordinates (7, #4); and H has coordinates (3, 1).

EF =T  + 37 =5
FG =N2F F+ I =45
GH =~vIT + 37 =5
HE =WN2% + 1% =AF
& EF = GH and FG = HE.

15. To prove lengths on different lines equal we must use
rectangular coordinate systems. Let the triangle be
ABC. Let AR be the positiVe x-a¥is of a rectangular
coordinate system, let B have coordinates (a, o) and

- L)
[
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A y-axis
let C have
coordinates (b,c). ¢ (be)
Then midpoint D of
AC has coordinates

b ¢ .

midpoint of CB has S A {o,0) B (3,0)

coordinates

E%E %). Using the

distance formula twice, AB =~/?3'2';' DE = J§2= Na .o
. DE = = :

Or simply AB 5

AB.

Njo ®

DE

Suggestions for Test Items for Chapter 6 Course II.
1. Assume two coordinate systems on the line below, one of
which assigns cobrdinate x to a point and the other

assigns %' to the same point.

x' - coordinstes

o $M0O

3
Y - .
v »
E

X - coordinates

(2 R X

a. What is the B, C-coordinate of tne midpoint of BC?
b. %het is B, D-coordinate of A?

c. What is the formule that converts x-coordinates to
x'-coordinates? Give asnswer in the form x' = ax + b.
d. What is the formula that converts x'-coordinates to

x-coordinates? Again give answer in the form x = ax' + b.




- 214 ~

4, show A (6, 3), B(2, -3) and C(100, 144), where all
coordinates are relative to the same coordinate systems,

are on the same iine,

F1033
5. Using the 0, A, D- coordinates Elaz
given in the diagram at the D (b31) K
right, show that 0, H and X H

o(0) ALY B(20) C(36)
are on the same 1line. ’

6. In triangle ABC let medians AD and BE intersect at G. Show
that the midpoints of AG, BG, D and E are vertices of a

parallelogram.

Answers for Test Items - Chapter 6

1. a, 1 e, 21
2 2
b, -1 f. 3:1lor2:1
2 2
c. x'=-1x+1 g. {P(x) | -1<x¢<3)}
2
d. X = -2x' + 2 h. (P(®) | - 1< x' <1}
2 2
i. {(P(x) | x = 0}
2. Using (A, B, D) as
D F c
base, the coordinates
H
of C are (1, 1) of G E
E (1, _21_), of F (1, 1). A 8

2
An equation for<ED”
is (1) x +y = 1:
for <KE>: (2)y = 1 x5 for <z B)y =2 x.

N

ERIC 219
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Solving (1) and (2) shows coordinates of G to be (%, %).
Solving (1) and (3) shows coordinates of H to be f%, %).
Since the coordinates of D, H, G, B are respectively

0, %, %, 1 it follows that DH=HG=GB.

-

(a) sSirce ABED is a parallelogram the A, D, B- coordinates
of E are (1, 1). Since <GFY<AD”all y-coordinates of

points on CF esre b. .. represent F coordinate as (x,b).
(v) Slope of <B67= p-1 = slope of §F= b-1 .~ x-1 = & or x=a+l.
o> 8 §5_> X~-1
(c) Slope of“AC” = gs slope of DF = g. - w2 | 5P

Slope of <AB’= 6 or 2.

2
Equation of <m5’= y-3 = 3 (x-6). This equation is satisfied
2 .
by (100, 144), since 144 - 3 = 3(100 - 6). Therefore
2

A, B, C are on the same line.

An equation for <AE” is (1) 2x +y = 2.

An equation for <IB” 1s (2) x + 2y = 2,

H has coordinates (%, %), the solution of (1) and (2).
An equation for <EE> is (3) 2x + 3y = 6.

An equation for <BF is (4) 3x + 2y = 4.

K hes coordinates ( g, g), the solution of (3) and (4).
The ccordinator of O, H, K satisfy y = x. Therefore

0O, H, K are collinear.

Let the midpoint of AG be X and let the midpoint of BG be L.
Since the.medians meet in & point thet divides each median,
from vertex to midpoint, in retic 2 : 3, AK=KG=GD and
BL=LG=GE. Since KDand IE bisect each other KLDE is a



parallelogrsm.
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CHAPTIER 7

REAL FUNCTIONS

Time Estimate For Chapter: 14 days

This chepter hes three main objectives: (1) Review and
extension of the mepping concept, (2) Examination of several
basic mappinés whose domainxaqd range set are subsets of the
real numbers--using both algebraic and greaphic methods--and
(3} Introduction to the operations of addition, multiplication,
and composition of real functions.

Formelly, a mapping is an ordered triple (S,T,h) where S
is & set; T a set, and "h" represents & process which assigns
to each element s of S (the domain) one and only one element t
of T (the ccdomain) called the image of s. For brevity, mappings
are often named with a single letter "f,"” "g," "h," etc.

However, it 1s critical that the domein and codomain be clearly
understood in each discussion of a mapping. A mapping is oﬁe—
to-one if end only if no element of the codomalin serves as the
image of more than one element of the domain. A mapping is onto
its codomain if and only if each element of the codomain serves
as the image of some element of the domein. | '

A mapping (S,T,h) is indicated

h: S

T

and individuel assignments are indicated

g_ D0

t or h(s)=t.
Because it is commonly used by methemeticians, the term "real

function" is introduced to refer to mappings with domain and

G4

I8
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codomain some subset of R, the real numbers. The word "function”

is synonymous with the word "mapping"!
The chapter should be comnleted in 14 cless days.

7.1 Mathematical Mappings (1 day)

The purpose of this section is review of the mapping concept
and notafion.
Answers to questions in the text:
First set: (1) Domain is all postal addresses in U.S.
(2) Codomain could be any set of numbers

which contain the whole numbers like
5440, 10027, 07639, ete.

Second set: (1) Yes. Construct 2 line through the point

of 31 parallel to £,. Teke as image the

A e e ey e

intersection with 22.

(2) Yes. Same process as in (1) reversed.

S ORI

T.2 Exercises

{ 1. (a) does. (Eech element of S is assigned one and only
% one element of T).
(b) does. (Unless your school has another grading system).
(c) does not--a has two imeges. |
(d) does not--o hes no image
(Note that f could easily be restricted to a mepping
by changing domain to Q‘\[o}. But this then is &

23
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different situation)

(e) does not--2 hes two images.
2. (a) -0 () B () W (a) -%8 (e) 2
3. (a) & (b) -4 (c) ZF: (d) 154 (e) -2

4, (a) -1 (b) :%ﬂ () o (e) 1§§ (e) -6

(a} 24 (b) 8 (¢) 5 (a) 324 (e) 12
5. (a) 12 (v) g (e} 12 (a) g (e) o

(a) Z6 (o) __ () (d) f156 (e} o

7.3 Properties of Real Functions (1 - 1% days)

The function notation P(3) = 9 has been mentioned briefly
in chapter 2, so it should be slightly familiar. The phraseology
"f of 3 equals 9" is a shortening of the more correct "f &ssigns
g as the image of 3" or "the image of R under f is 9." The
short form might seem unnatural to students--in any case,
frequent use of the longer more more correct phrase will heip
and also keep the meaning of the notation straight.

2

The assignment processes x x“ and x —|x| do not

define one-to-one functions of R onto K. Here the importance

of determining domain and codomain clearly can be stressed

because hoth processes will give one~to-one function of R>o onto
R>o' Sometimes these restricted domain and codomains will

suffice for problems to be solved, often not.
Answefs to questions in text:
Pirst set: (1) 0, 2, 7
(@)t %
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Second set: -2 has no pre-image under X- h | x|

Third set: (1) Yes.
(2) No.
(3) No.

7.4 Exercises

3.

(e)
(b)
(c)
(d)
(e)
(f)
(a)
(v)
(c)
(a)

(e)
(e)
(b)
(c)
(d)
(e)
(2)
(b)

(1) 2, (11) 7, (111) 7, (iv) 9% (v) 29, (vi) 63k,
(1) ¥8, (11) _, (111) *2, (iv) _, (v) _, (vi) o.
{x € Rt x > 2}

No, -2 not an image

No, f(2) =4 and £ (-2) = 4

No, f(2) = £ (-2) = 4

(1) 0, (11) -7, (i11) 2, (iv) -5 (v) ~Z, (vi)
Yes, if g(a) = g(v), then -a = <b—2a = b

R

Yes, each element of R has an opposite and for each

X € R, =X g X.

0 (No others since X = =X—eX + X = 0—2X = 0—Xx = 0).
(1) -1, (i1) o0, (iti) o0, (iv) o0, (v) 2.

(1) -2, (i1) 3, (ii1) h, o.

No, £ (-1) = £ (0) = £(1) = 0.

(-2, -1, 0, 1, 2},

No, range # codomain.

No, many addresses have same zip code,.

No, 752,683 is not a zip code.

Range of =z is set of numbers like 54494, 73469, 19927,

205

s
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etc. (might not be all 5 digit numbers though. So
here is a good example of a range which does not have

e neat defining condition.)

5. (a) (1) 1, (1) & (1) § ) 3 (Mg (1) 3

.y 8 1
(vii} = (viil) .

() (1) 3 (13 (1) _, ()1, (v) _, (1) 55

1 1 X X
(C) Yes, 3(-=§--»-—-¥-=_%_.y=x.
= 1 _1 ab _ab _
f(a) = £(b) — il Y-t ~ therefore, b = a.

(d) (x € R: 5< x <1},

(e) No, % ¢ range but % € codomain.
6. (a) Yes.

(b) Yes. For each x € R, -Xx+ 6 —&.x,
7. (a) True.

(b) False.

(c) True.

(d) Palse.

7.5 Representing Real Functions ( 1% - 2 days)

To get sterted toward graphical representation of a function,
.1t is shown that every real function determines a set of ordered
pairs of reel numbers. When the points these palrs name are
located on a coordinatized plane, the resultant graph gives a
general picture of the behavior of the function: (1) where it
assigns positive number as images, where negative, and where zero;
(2) where it assigns greatest numbers as images and where smellest;

(3) which numbers are assigned as images and which are not; ete.

2916

£
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Perpendicular axes are used exclusively, but scales are not
always the same on the two axes--partly for convenience and
partly because the domailn and codomain in applications are very
often differently scaled. For example, presgsure might be given
in pounds per square inch and temperature in degrees centigrade.

After locating many points in the graph of x-——oxe, the
graph is "completed as the pattern indicates." Cautlion that the
function might not behave so nicely. There will be exercises to
emphasize this point. Only experience, judgment of the rule,
and careful and patient checking will allow one to know when a

graph "continues the pattern."”

7.6 Exercises

Note: Use of a graph of % to compute »/x is dangerous
unless the graph 1s constructed witﬁ utmost care.

1. (a) (1.4, 2) (v) (2.2, 5) (e) (2.4, 6) (a) (-2.4, 6)
(e) (-2, 4)

2. (a) 1.4 (b) 2.2 (c) 2.4 (d) 2.6 (Answers might vary here).

Answers willl vary.
4, (a)

, 2
0 -3 3 -3

2 0 11 -7

(319 lay/
S
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(v)-(d) 4

x
(C) 17, =13, 3
5 (a)
0 2 4 6
0 2 4 6
(b) - (e)
~Y
& >
\ , x
7
o 7
L
e
/

09
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(v) and (c)

t

(d) (1) 1, (1) 1, (141) 1, (iv) o0, (v) o,
(e) The actual graph of p should look like

M
v

where 's—" indicates the interval (a, b] where a does

not belong but b does.

ERIC 299

F ¥
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N

10.
11.

12,
13.

v
AN
v
N
\f

>N

"\_3 _ \/

(a) no (b) yes (ec) no (d) yes.
No vertical line intersects the graph in more than one point.

v (b) yes. \

(a) no. N\<\\}:J///ﬁ 4
< l ; & :? I -3

(e) no. X (a) no. Y ey
\/‘ —
- ' s ) -t »
- ; € .a.a(('
$ J
(e) yes. Y (f) no. ay

\\:3 % -v\ -L/\f?%

No horizontal line intersects the graph in more than one point.

() no (b) yes (c) yes (d) no.
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7.7 Composition of Functions (1 - 1} deys)

In this section the study of function slgebra is begun by
considering the operational system (F,o) where F is the set of
all functions from R to R and o is composition. Because we want
to study @ whole collection of functions &t once, we require
that they have the same domain and codomain R to avoid continual
worry about existence of gof as an element of F. (¥,o0) is not

a group--a fact which comes out in Section 7.9.

7.8 Exercises

1. (a) 9 (b) 45 (c) 99.9 (4) 81 (e) 49.2

(f) 30 (g) 35 (h) 33.3 (1) 27 (3) 16.4
2. () 7 @) & () @ (@ 2 ()1 () 1
() 3 () 1 (1) 1 (H & (& 1 (1) 1
3. x h k hok koh
0 -24.5 15.75 -8.75 -8.75
19 -5.5 34.75 10.25 10.25
-33 -57.5 -17.25 -41,75 -41,75
-17.25 | -U1.75 -1.5 -26.0 -26.0
3.14 | -21.36 18.89 -5.61 -5.61
-2.7 -27.2 13.05 | -11.45 -11.45
Yes

D
e
P
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X m n mon nom
0 -7 -126 -7
43 e 36 648 767
=15 =270 -22 -396 =277
12 216 5 90 209
No
No (See 4)
(a) 6¢ (b). 30¢ (c) 24¢ (da) 64

(a) .
(1) 1, (11) 20, (111) 8, (iv) 1,

(v} 3, (vi) 5, (vii) 4, (viii) 6.

™)io ¢ o

(e

8t ]

—_

5 —

y b

H1L

1 2 3 4 5

(e) (1) $1.10 (13) 204 (11i) 8o
(a) (2) _ t | (not tax)
(a) $ .15 (1) ) 7
$ .13 (2)
$ .52 (3)
- $2.00 (4)

a9
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.o, (a) (1) 96.00 (v) (1) o (v) .02
(11) 32.10 (1) o (vi) .02
(111) T762.01 - {iit) .ol (vii) .03
(iv) .01
(c) ;fdu
ol — RESEMBLES
| - PoSTAL funeTioN
ofr — J(Loo
Y 83 o cosT
| 10. (8) (1) 2 (1v) 0©
(11) 7 v) 3
(111) -4 (vi) -2
: () (1) o
2
(1) 3
4 (111) -2
: (c) x 805,
(d) x-I98x

1. n—-$.50n + $.40n=$.90n

7.9 Inverses of Real Functions (2 days)

Clesrly a function which is not one-to-one can have no
inverse since this inverse would have to assign two images to 8
single domain element. x——h—-)lxl from R to R has no inverse

because that inverse would be required to assign -2 and 2 as the

image of 2.

(9
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It is not so clear thet there are one-to-one functions with-
out inversessy that is, a function must be both one-to-one and
onto to have an inverse, The function x-—£>|§_T_$T maps R
one-to-one onto (-1, 1), but not onto R. There are many functions
which reverse the assignments of f and thus satisfy

gof = JR:‘
but none which elso satisfy |
£og = Jps
required to meke (F,0) & group. The work here becomes ticklish
and somewhat messy because we are carrying around R as a codomain,

We are, however, able to rescue the situation in terms of

the more general inverse of a function as contrasted with the

inverse of an element in (F,o0). Of course, when f € F has an
operational inverse, it coincides with the inverse of f as a
fqnction. The proof which follows the definition of a function
{nverse may be reasonably soft-pedaled in the sense that it
observes generally what has been noted several times in examples,
both in Course I and in Course II.

The notion of equivalent functions is introduced here to
recognize the fact that in many situations, the range 1s more
importent than the entire codomain. This may seem more e
terminological than an actual problem. In any cese, equivalent
function is not a central notion at this point, except to enable
us to say £hat a one-to-one function is elways equivalent to a
function having an inverse. 1In this &nd all later function

algebre, it will be important to remember that f = g ——p

. £(x) = g(x) V x in domain £, &nd the domain and codomain of f

24
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and g are ldentical.

T.1l0 Exercises

g 1, (e) not one-to-one, onto, but no inverse.

E (b) one-to-one, not onto, no inverse.

i (e) one-to-one, onto, inverse.

(d) not one-to-one, onto, no 1nverse;

g (e) one-to-one, not onto, no inverse.

2. (b) (b', e, dr, e')

E (e) (10, 11, 13, 16, 20, 25, 31, 38}

3. (a) Yes - Each image has a unique pre-image.

(p) Yes - Codomain equals range.

e o ety e - .

(¢c) Yes x—87 5 -x T;y

(2) x-232x
(b) - (e)

4+
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5. (a) Yes, each image has a unique pre-image.

(b) Yes, codomain equals range.

(¢) Yes i x—E&2x
Y

\

(2) Yes, each image has a unique pre-image.

(b) Yes, codomain is equal to the range.

(¢) Yes =~ x-zl; - %x

T. j bisects angle between f and £ ! of £ is 1mage of_f'1
under reflection in J.

8. (&) No, not one-to-one

()  =-mm-

(¢) R _ o for a domein and codomain.

T‘/

»

9. (8) Mo £(}) = £(1)
(b) No f£(x)

(¢) No not1l-1

o il

)

(d) By picking one point in each interval (0, 1), (1, 2),.

ete. for domain.

o]
>y
)
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10. (a) = not defined.

& ® LhLe%Za-bh-bhoe -2 .2
; (e)
f (d) Yes, each image has a
g unique pre~imeges
Yes, codomain equals
range., == —
(e) Yes
x_?i_,% &
| domain R \{o}
11. () (1) o (6) o
| (@) F (7) 1
{ (3) ;% (8) -1
1 (4) T (9) 2
(5) - g— (10) -2
(®) (1) o (6) o
(2) 1 (1) 3
(3) -1 (8) -3
(4) 2 (9) %
(5) -2 (10) _%’_
(¢) Yes
(d)  Yes
(*Y No
(f) No
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7.11 [f + g] and [f - g] (1% - 2 days)

This section 1nﬁroduces two new operations on'functions-e
operatidns which_ére definable primarily because their domain '
and codomain is the real numbers. The way in which the function
{f + g] assigns images is wholly dependent 6n the possibility
6f adding any two feal numbers. Similar remarks are appropriate
for [f - g] and [f * g] and [é]. It is not possible to define

[£ - g] on the set of all functions from W to W because
f(x) - g(x) might not always name a whole nunber,
| It is most important to emphasize that addition; subtractiqn,

mﬁltipiication, and division of functions are operations on F

', distinet from compo:sition--just as maximizing, lem, and other

operations were defined on W, distinct from + and *. If f and

g are linear and have been graphed, the gfaphs of [f + gl and

{f -~ g] are obtained by examining the points where.f and g are O.
For instance, if f(x) = 0, then [f + g}(x) = g(x) and if

g(y) =0, then [+ gl(y) = £(y) ~ (x, g(x)) and (y, £(y)) are
two points in the graph of [f +g ] and the linear graph of

[+ gl is determined. | ' |

T
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7.12 Exercises
Note: Exercise 9 s-hould be covered. Its result is used later,
1. (&) (1) 3 (i1) 3 (it1) 3 (iv) 3 (v) 3
(vi) 0 (vii) 1 (viti) 1 (ix) 16,% (x) +23
(b) (1) 3 (1) & (111) 4 (iv) 193 (v) 26
(vi) 3 (vi1) 2 (viii) 2 (ix) -13_%- (x) 20
(¢) (1) 3 (i) 3 (i11) 3 (iv) 3  (v) 3
(vi) 3 (vii) 3 (viit) 3 (ix) 3 (x) 3
(@) (1) 3 (1) & (1i1) 4 (iv) 195 (v) 26
(vi) -3 (vi1) -2 (vit1) -2 (ix) 135 (x) 20

(e) (1) «x Ix} + 3
(11) x |x] + 3 or 3 + |x|
(1i1) x 3 - |x]
(iv) «x x| - 3
(v) x 3
) \ CF+gy]
\\ \\ // //'3'
\ \ y Ve
D / 7

R39
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(a) | |
X h K [h + ] [h - k] [k - h]
0 0 -1 -1 1 -1
7 343 .20 363 323 -323
12.5 | 1953.125| 26.5 1989. 625 1916.625 | -1916.625
-1 | -27u4 -43 -2787 -2701 2701
-3 27 }-10 -37 -17 17
() (1) -1 (1v) 374
(11) -1 (v) =343
(111) 274k (vi) -25

(¢) (1) x-thtKlys 4 (3x - 1)
(11) xI0 = Kl s . (32 - 1)

(111) «x

(d)

[k + h]

(1v) xLE=hlyax - 1) - x* |

(3x - 1) + x°




bs >2X+1
x—& >%x¥2
x—£i5—>%x-1
E x—£:5—>%x+3

Note: 1In order to obtaiﬁythe graph of [f + g](x) uring
the graph of f and g, use the following proceedure. Construct
several vertical lines intersecting the graphs of f and g. If
f(x) and g(x) are both positive then measure f(x) with a compess
and place the point of the compass on the intersection of g(x)
and the vertical line and inscribe an arc intersecting the
vertical iine above g(x). This point will be contained in the
graph of [g + f](x) or [f + g}(x). If f£f(x) and g(x) have different
éigns then the negative sign must be subtracted from the
positive value. If f(x) and g(x) are both negative they must
be added negatively. ”
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(8) (1) 1
(11) 1
(111) 1
’ |- : G (iv) 1
———— K | v 1
(@) (1) (x+2) + 3x (b) Yes.

(11) 3» - x®
(111) [(x +2) +3x) - x*
(1v) (x +2) +(3x - x3) |
() [f+ [g+h)(x) = £(x) + [g + h](x)
= £(x) + (g(x) + h(x))
= (£(x) + &(x)) + h(x)

(d) vYes, it is.

23
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9. x--—c-,.o for all x.

10. (a) (1) o () x-LEf*el,
(i1) o (c) Yes, because h + [-h] =0
(111) o (@) x-prl-hl g
(iv) O (e) Yes. Self-evident
(f) Yes, satisfies all group
properties,
11. '(a) Aa'. | (v) | A\s |
/ S
A \/ ®
| N
d
(e) 'y
—
r
v

12. Yes. [f + gl(x) = £(x) + g(x) = s(X).+ f(x) = (g + £1(x)
No. [f - gl(x) = £(x) - g(x) # g(x) - £(x) = [g - £1(x)
therefore, [f - g)(x) # [g - £]1(x)

7.13 [f --g] and L—é (1 - 1% days)

The problem with defining [é‘-] for all f, g in F is the fact

24
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f(x
f e
[E] is a function with domain all

that g(x) may be O for some x and thus [g](x) = cannot always

be defined as &n element of F.

x such that g(x) # 0.
7.14 Exercises
1. () (1) o (vi) O
(11) 12 (vit) 2
(111) 16.8 (viit) 2.8
(iv) -25.2 (ix) -4.2
(v) -54 (x) -9
(b) (1) o {vi) 0O
(11) 24 (vit) 24
(111) 47.04 (viii) 47.04
(1v) 105.84 (1x)  105.84
(v) 486 (x) 486
(¢) (1) undefined (iv) undefined
(11) 6 (v) %
(111) 6 (vi) 2
(d) (1) o (111) 5.6
(11) &4 (iv)

-18
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2, [f+g] [f - g]
12% -61
2
~203 -78
3 -340
1 0
4, () {(y€R y>1), (y €R 0<&y <1}, (1)
() Ix| + 1 I 12 233 4 4 3% 3
1 ;111111202
TxT * 1 7 233585 F 33
(e)-(4) : h
A‘Q‘ ’
/——"""5"’——_—’ Y
L o x
b
5. (a) (1) 53 (iv) 1
(11) 3% (v) 1
(111) 87.5 (vi) 1
(v) (1) 53 (iv) 53
(11) 3% ' (v) 39

(111) 87.50 (vi) 87.5
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(1)
(i1)
(111)
(iv)
(v)

Ul -

NOj

Ul &

(vi) v
(vit) 13
(viii)
(ix)

U=
U=



-

10.

\ 2
Note: It must be noted that this function may not be
defined for all \}alues of x. The above graph
shows approximate values of the function i.e.:
h(x) = gy = 1
h(x) =2 H'('JIT)' = %—
(a) [f - [g- h])(x) = £(x) - [g - h](x)
= f(x) + (g(x) - h(x))
= (£(x) + g{x)) - h(x)
(b) - 1is associative. .
X g h (f - g] [f + h] [f - g] + [f - h]
2 5 4 Lo 22 72
) 0 -1 .0 0 ) 0
2| -8 ]-71]-4 56 22 88
(g + h] £ . [g+h]
9 T2
-1 )
-11 88
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11. Distributive property of - over +.

12, Commutative 4 . Distributive
Associative .+ . : Inverses +
Identities x— O, X ——p1
Cancellation +
After this exercise a good class discussion might arise
from comparing (F, +, ) to the structure of number systems.
It might aslso be interesting to examine (F, +, 0) and
(F, -5 0). Let the students experiment and arrive at
conjectures of properties--no fixed 1iét need be developed
at this stage.

13. (&) (1) 9, (it) 39, (ii1) -33.

(v) x-§£+(6x + 9)
(¢) (1) o (it) 75 (iii) 147
(a) x—§5—§3x2

(e) (1) 9 (1v) 9
(11) 114 (v) 114
(111) 114 (vi) 114

The operation introduced here is scalar multiplication in
the group of real functions (F, +). The inclusion of this
new external operation makes the set of functions a

vector space, but this is for the future.

7.15 The SqQuare.Root and Cube Root Functions (2 - 3 days)

This section looks at square and cube root assignment as
a process defined at every point of the line (positive x for «~),
not &8s the rendom assignments ~/2, ¥/5, «/7, ¥4 etc. which are

209
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usually generated by equation solution. The grephs of + and 3/

are generated using symmetries in y = X.

7.16 Exercises

1. (a) 2.2
(b) 2.4
(e) 2.6 | (answers-will vary)
(a) 1.6
(e) 2.1

2. Answers will veary

3. (a) 2
(b) 1.8
(e) 1.9
(a) 1.6
(e) 1.3

4, Answers will vary.

5. (a) x<oorx>1 (i) -1 <x<0orx>1
(b) 0<x<K1 (k) x < =-1lor0<x<l
(¢) x=0, x=1 (1) x=1*11, 0
(d) x=0, x =1 (m) x=7%1,0
(e) x>1 ' (n) =1 <¢<x<0orx>1
(f) o<x<1 (0) x < =-lorog¢x<l
(g) o< x<1 (p) x < -lor0<x<1
(h) x>1 (g) -1 <x<O0orx>1
(1) x=0, 1 (r) x=0, 1
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6. (a) 11 (e) avn (1) 2 (m) -396
(b) 10 (£) W3 (3) 3 (n) /2
(¢) 8 (&) 10V5 (k) 15 (o) 15
(@) & (n) 394 (1) g2 (p) -396

7. (8) W2 (£) &
(v) -3 () 10 +5/3 - &2 - V6
(c) -3/6 (h) 215 - 5/10 + W6 - 20
(a) Lve (1) -1
(e) 90 (3) 26

8. g(x)=1x

g(ab) = (ab)® = (ab)(ab)(ab) = (asa)(bbb) = a°b° = g(a) - g(b).
s £ is multiplicative.
Jab =Ja - v ifr (Jab)® = (Ja . Ib)?, by definition of ¥ .
But, |
(Jab)® = ab by definition of & .
And,
@a - Ib)* = @a)® @v)® by multiplicative property of g.
Now, @a)® = a end @b)? = v,

Jab =Ja . Jv .

ERIC

Full Tt Provided by ERIC.
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7.18 Review Exercises

1. X h g goh [h + g] (h + g}
0 0 -1 -1 -1 0
1 1l 1l 1l 2 1l
-1 1l -3 1 -2 -3
1 361 =41 713 238 14801
63 T 3 =R R =27
12 144 23 287 167 3312
-19 361 -39 721 322 14079
A2 2 e -1 3 a2 + 1 /e -2
|-31 9 5 17 14 45
2. b
+
!
< ' —>
_ A M
3.

Vs S

VAR



(a)
(b)
(e)
(a)

no yes
0 -1
3 1

q\
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(1)
(2)
(3)
(4)
(5)
(6)
(2)
(b)
(c)
(d)
(e)
(£)

(a)
No, |¥1] =1
Yes
Yes
Yes '
No, Tl 2.14
Yes
7.51
-2197

(w O O

L1b
.25

o

? €— N>
(v) (c)*'

No, ? ————3 -2

Yes ' x &' gx

Yes X h:l %—x + 17

Yes x K X - A2

. NOy fmm——3 2

Yes x-—n;l—h -%—x ’

(g) 3.14 (1) -3360

(h) 15.7 (m) 50,000

(1) -153 (n) 50,000

(3) -425 (o) -3ko

(k) 339 (p) -81



(a)
(v)
(e}

(d)

- 2lg -

x 0 * 0] ooy 289
X _lzll_fl_,SBX' - 1l4s5x

x—[nom 5.7
x[monlys

(e)
(£)
(g)
(h)

Suggestions for test items for Chepter 7

n « gl

X ——=ay 5x*

X

X

X ———pfx +4/2)

[g o n]

—& = “la105%°

(58],

5x°

or

X3 X3 + 3x%W2 +

6x + a/2

I. Let the following functions from R to R be as follows:
f: x—|x| + 2
g: X ——yx?
h: x-;——+5x -3
Complete the following table:
x| f|lglh]foglh+f]| h- g % gof |g-f ] 4h
7
IT. Graph the following functions on one coordinate axes:

(a)
(v)

b:

m:

X ——p g« -

2

X—3 2x® - 5

5
i

25A
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(¢) n: x—a2ix| +3

(@) [4 + (mn)](x) Hint: Use addition of
ordinates
ITT. (a) Graph the following fdnctions on one coordinate axes:
‘V ' .
’ y=x+2, y=2x°, y =%

(b) From the above graphs, estimate the solution of the
following to the nearest tenth:

1) Ix =x+2 5) x® >x+2
2) Ix>x +2 6) x* <x +2
3) X< x +2 7) % >
4) x® =x + 2

IV. For the graph of f given below -
a) Give the rule for f.
b) 1Is this function one-to-one? Explain why or why not.
c) Is this function onto? Explain why or why not.
d) Whaet is the image of 37
e) What is the pre-image of 5°?
f) Sketch the graph of ~f on the same coordinate axes.
g) Sketch the graph of‘% on the same coordinate exes,

i
|
L

er
£
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Solution to chapter test

Ve
e[ o 1T
= ~ nw,
Gt
b~ O
52 Sk
1 Q
el
G o o
o |2 gk
— \\e}
b
g
o
S| o~ 7
=
o &
. QN0 al
o) ~
< oﬂ
G4
) OV
+ 1_2 :(T
<
o
(o} Www (38
[
gF
oM
< (\8) —~
— 1
—~
80 | W \O
Q (12}
| N wne
~ Q
x | ni=g 1&3
. 1
[

T(a) - (a)

i
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HWx,
|
(b) 1) = -3.,6 5) ¥>®1.5
2) x <% - 3.6 6) x < % 1.5
2) x>®-3,6 7 x<-1 or 0<x<1
4y = 1.5
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IV. 8) f: x=—|x| + 2
b) No - one imsge has two pre-images.

¢) Ne - codomain # range

da) 5
e) 3
(£) - (e)

| — i s—

org
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Chapter 8
Descriptive Statistics
Time estimate for chapter: 14 days with review

Introduction (Time estimate for 8.1, 8.2, 8.3 = 2 days)

The purpose of this chapter 1s to review and extend the
material begun in Chapter 5 of Course I--with speclal emphasis
on techniques for collecting statistical data, summarizing it

. by means of graphs and tables, and analyzing it by means of

measures of central tendency and dispersion, such as the mean
and variance. |

The concepts of probability which were introduced in
Chapter 5 of Course I will be picked up and studied further
in Course III. However, especially in connection with the
exercises in 8.3, the ideas of an experiment, a sample, a
random sample, sample space, probability, etc. can profitably
be mentioned and noted.

The experiments and problems of Section 8.3 (as well
as the 1llustrative example éf-séction 8.2) éfé key problems
in the sense that they are referred to and continued
throughout the chapier. For that reason it is important that
students retaln coples of thelr original data--and whatever
they do with the data--throughout thls chapter. To ald
teachers in choosing problems to be assigned, a 1list of
broblems dependent on others will be found at the end of this
commentary.

Though some of the computation called for--especlally

70
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in the latter parts of the chapter--may seem time consuming
and tedious, it provides an excellent opportunity to review
and drill on important arithmetical computational skills. Tt
is worthwhile, for example, to compute means and variances

by both the long method and by the short-cuts of Section 8.10,

8.2 Examples of Sets of Data and Their Graphical Presentation

The graphlc techniques of this chapter are the frequency
diagram, the cumulative frequency diagram, the frequency

histogram, and the frequency and cumulative frequency polygons.
It is important that students be able to relate these to each
other and to the data tables from which they are obtalned. One
ppssible technique might be to start with one set of data, for
example that of Table 8.1, and construct in succession a
frequency diagram, a cumulative frequency diagram, a frequency
histogram, and finally, frequency and cumulative frgquency
polygons. (Note that the frequency polygon may be drawn
directly on the graph of the frequency histogram, gﬁnsgpwn'in
Figure 8.5). While it would be possible to construct a
cumulative frequency histogram, it 1s less frequently used
than the others and is not discussed in this chapter.

One useful property of the frequency histogram 1s that
since each bar in the histogram has the frequency for its
height and the measure for its base, the total area of the
hlstogram for a distribution 1s equal to the total number of
observations. This might be pointed out in passing for the

orn
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benefit of the better students.

The definitions of range, median, mode and quartile

should be discussed and understood. Before computing the
median the data must be ordered. Also, be sure to stress
the fact that the frequency must be taxenyinto consideration.
Example: The set {1,1,1,4,3} has median = 1,
not 3 &s does {1,3,4)
In definition 2, the phrase "the middle
measure" may be misunderstood without this
extra discussion, |
Note that a distribution may have more than
one mode,
Note also that the xth percentile is that
point on the cumulative frequency graph
at or below which there are x percent of
the measurements. For example, in Figure 8.6,
there were 9 bulbs (or 18%) which had a life
of less than or equal to 975 hours, so 975 is
e the 18th percentile. R

8.3 Exercises

Students should not be expected to do all the exercises
in this section. At least two of Problems 1-5 should be
assigned, including either Problem 3 or Problem 4, either
Problem 6 or 8, and at least one of 9-11, In this section
as }n succeeding ones, how many and which problems are assignéd

[]{U:‘ must to a large degree depend on the teacher's judgment of i

GrA
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the students' comprehension of the material. It may be

desirable to assign some of the exercises in this section

later in the chapter.

Solutions to Problems

la,
Ngmber 3
of .
2
Sentences ‘
A O T
‘o 20 1) 30. ‘.o‘ { 50 Y YT w.;;. .70.- "“..18‘0
Length of Sentence (number of words)
Cum. % Cum Freq.CUMULATTVE FREQUENCY GRAPH
100% = 40 ?
75% = 30
50%2 = g9 T
25% = 10 | | ;
l ' 1 ‘ ‘
UTETIN PO 1|J.1| g‘ A lasend 1 ] TPy adelss 2t i ot b [(EEE I W TR W
10 /20 / 30 ‘V 50 60 70 80
Lower Mq@ian Upper Length of Sentence
Quartile =:28 Quartile (nc. of words)
= 19 i = 44 '
[Jiﬁ:ge: 733 Median: 28; Lower Quartile: 195 Upper Quartile: 44

i
209
ANY
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To estimate the mean: Each card has an equally likely
probability of being drawn. Hence the mean (expectation)

for a draw of one card would bel% (L+2+ ...+ 13) =

= 7. For three cards drawn, with replacement,

the expected value for the sum would be T+7+7=21,
We may use this as a good estimate for the median without
replacement, assuming the distribution to be symmetric.
(This exercise might be a good one to do in class.
Students should actually obtain the mean by doing the
experiment; the above calculation is for the teacher's
benefit and should not be presented to the class.)

Since the probability of beads is 1/2, the expected
sample mean is 1/2 + 20 or 10, éo the example median may
be estimated to be 10,

Since the maximum sum is 18 and the minimum sum is 8, the
expected nample mean is 10 1/2, so the sample median may be
estimated to be 10 1/2,

We would expect each digit of the set {0, 1, ... 9} to be
equally likely (i. e., to occur approximately the same
number of times). 5(c) asks for summarizing. Have the
students make a frequency table, a frequency histogram
and a frequercy polygon.

Part of the purpose of this problem, and of Problems 9-11,
i1s to let the students construct a table completely on
their own, witﬁ no information (other than the data) being
given. At least one problem of this type should be

ora
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assigned as a home exercise,
7-8. Answers are in the text. (Figure 8.6).
9-11, Answers will vary. Students' solutions should be

compared and discussed.

8.4 The Symbol E: and Summation (Time estimate for 8.4 and
3.5 = 2 days)

This section will give students their first formal
introduction to summation and use of the symbol & , Since'
"L" 1s used extensively in the rest of this chapter and is
essential for much later work in mathematics, it is important
that this section be covered carefully. However, the teacher
should keep in mind that this is only a first introduction,
and should not expect all students to exhibit perfect
comprehension., This will come with practice and review in
this and later courses.

Some enrichment material could be introduced here.

5 7
For example, what 1s the meaning of §:x21 oerxi_2 9
i=1 1=3
8.5 Exercises

All parts of Problems 1 and 2 should be assigned and
gone ovsr in class, Problems 3-7 involve derivation of
various properties in summation. Since these properties are
used in later work, the results of these exercises should be
stressed, Every student should have a good understanding of

how the results of Problems 3, 4, and 6 are obtained, and in
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particular how these results depend on properties of the

real numbers.(commutativity, associativity, etc.). Problem 7
is a combination of the results of the preceding exercises.
While not all students will be able to do this problem
unaided, it should be assigned (perhaps on a "try it" basis)

and gone over in class.

Answers to Exercises

1, a, 15 b. 71 e¢. 75 d, 35 e. ‘15 + bk
2, a, 8 b. 70 e. 30

n
3. Likxy = (kx) + kxp + KXg + ..o kx)
i=1 .
= k(f} + Xy Ky o+ ok xn)
= szi
i<l
n
4. E(ai + bi) = (a'l + bl) + (32 + ba) + (8-3 + b3) + ...t (a.n + bn)
i=1
n n
= Fay +Lby
i=1 i=1
a, If n =3, we have

3

[lag +04) = (a) + by) + (a5 + by) + (a3 + b3)

i=1

= (a; + ap + a3) + (by + by + b3)
5 2
= /ay +'Lb1
i=1 i=1

“ERIC 7
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b. The summation of the sum of two sets of terms is

equal to the sum of their separate summations.

n n
5. ) (8y - b= )y + (-b,)]
i=1 i=1
n n
= zai +z('bi.) (by Exercise 4)
i=1 i=1
n n
= za‘n + ( - zbi) (by Exercise 3)
i=1 i=1
n n
- Zan - Ebi (def. of Subt.)
i=1 i=
n
6. ZK= +k+k+k+ ...+ k=nk
1=1 k\——w
n terms
n n
Y; 2 _ z 2 3
7. p(xi-m) = (xi-2xim+m)
i=1 =1 :
n n n
Y Y Y
= Lx§ - Ll2xym+ [m® (by Exercise 4 and 5)
i=1 i=1 i=1
n n {_}
= in - em_?xi + /m® (by Exercise 3)
i=1 i=1 i=1
n n
= Sx?l - 2m2x1 + nm® (result of Exercise 6)
i=1 i=1
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8.6 The Arithmetic Mean, Its Computation and Properties
Time estImate including 5.0 and 8.7 = 3 days)

In this section the mean is introduced, using the
summation symbolism developed in Séction 8.4, Students may
question the necessity of this new statistic, since they
are already familiar with the medlan and the mode. It might
be desirable to indicate (without attempting to give reasons)
that the mean is mathematically more useful than either the
median or the mode., In fact, work from this point on will
(of these three statistics) be mostly concerned with the mean.

Students should realize that the formula for the mean
using frequencles of measurements is merely a computational
device thet comes directly from the basic definition., One
way of introducing this might be to start with several
measurements 2f one value and one or two having other values.
For example, suppose Xy = 3, X, = 3, Xg = 3, % = 3, Xg = 8.
Then from the definition we can write
X + X5 + X5 4+ X) + Xg = 34 3+43+3+8.,

> 5
Students will see immediately that we could write
x=4.3+8.
———

X =

L is simply the number of measurements having value 3, or the
frequency of that measurement,

It should be emphasized that the addition and
multiplication properties of the mean discussed in this section
are direct cohsequences of the definition and the summation

]fRJ(j properties developed in Section 8.4, The usefulness and the
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importance of these properties should again be stressed at
this point. Agair, Zhey are useful in computational problems,
and one or two of these problems might be done in class at
this point in the development,

Althougli the theorem at the end of this sectlon 1s
1mpoitant, ‘“he tencher should not spend too much time on it.
If necessary, as 8 "convincer“.or motivational. device to
begin this theorem, students should calculate the sums of the
deviations from the mean (for a relatively small amount of
data) to see that the theorem actuwally does hold.

For enrichment purposes you may want tq introduce st
least two other "mathematical aversges". They have
interesting properties'and there are interesting relations
between them.

The geometric mean of a set of n numbers is the nth
root of their product. For example, the geometric mean of
the numbers 4 and 9 is VE x 9 = 6, (You will notice that
for the case of two numbers the geometric mean 1s what is

more commonly called the mean proportional.)

The hermonic mean of a set of nurbers 1s the reciprocal
of the arithmetic means of the reciprocals of the numbers. For

example, the harmonic meen of the two numbers 4 and 9 is

1 2 2 72
s D e e gl—q = = 5.5 (approx.)
itz g+y o O
1'%

078
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The harmonic mean is used in problems involving
rates. For example:

(1) If a men drives a distance of 60 miles at an

avérage rate of 30 mph and returns over the
same way at 20 mph, what was hic average
rete of speed for the round trip?

(2) One man can do & Job in 3 days and another can
do it in 2 days. How long will it take the two
men to do the Job 1f they work together? What
is the average of their rates of work? |

Exerclses can be given to find the arithmetics; gecmetric,
and harmonic means of two or more numbers and to compare them.

A culminating problem for such enrichment work might
be to pose the problem of proving the following theorem.

"Prove that if two positive numbers a < b are given:

(1) The geometric mean of a and b is the geometric mean

of . their harmonic mean and their arithmetic
mean. (or GM = VHM - AM)

(2) a<HI<KGM < AM< Db."

Two interesting discussions that can be developed about
the concept of averages are: (1) What are the qualities that
an average should have? (2) Which average is the bast?

Some criteria for an average that might be cited are:
it should be neér the center of the distribution; it should
be easy to compute and comprehend; it should depend in some

way on all the measures: it should be stable with respect to

279
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grouping; etc.

The discussion of averages might elicit cituations in
which an average 1s not called for, For example: The
height of a bridge over a river; the weight capacity of an
elevator; comparing two cities by means of their mean annual
temperatures; etc.

The general topic of étatistics, its uses and misuses
can glve rise to some valuable discussions. Some good

references for this topic are:

Wallist The Nature of Statistics
; Roberts (collier Books)--paperback
(Chapter 4: Misuses of Statilstics)
Mitchell and Algebras - A of Thinkigg
Walker iHarcour ace and Co,)
(Chepter XI: Statistics)
Walker and Elementary Statistical Methods
Lev

8.7 Exercises

These exercises are primarily designed to give students
practice in working with means, and to broaden their
understanding of the meaning and the properties of the mean.
The first five exercises involve transforming sets of data
and the effects of these transformations on the means, and
should be done by all students. Problems 4 and 5 lead to
the generalization asked for in Problem 7. All students
should try to make this generalization, but not all should
be expected to prove it., The teacher should point out agaln
the importance of the summatia? material in doing this problem
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and Problem 19,

Problems 8-14 are largely computational and a selection
of these should be assigned for homework. Problem 17 is a
review problem. Problem 18 should be given, as it requires
some thought about the basic definition of the mean and a
little algebra. Problem 19 may be considered cptional,
although better students wili profit by trying it. 1In a
good class this problem might be glven extra attention.

Answers to Exercises

1l. Mean of 1lst set of data = 5,

Mean of new set of data = 12,

2, Mean of new set of measurements = 10,

The mean of the new set of measurements is the sum
of the means of the original sets.

3. Mean of 1st set = 5, Mean of new set = 35, The mean
of the new set 1s 7 times the mean of the 1lst set.

L, Mean of 1st set = 6., Mean of new set = 47. The mean
of the new set is 5 more than 7 times the mean of the
1st set.

5. a. 38.3 b. 101 (to the nearest degree)

6. Mean = 35.4, Median = 36.

Watch for confusion on wording here. Merely find the
mean of the distribution and the median. "Number of

students per class" and "number of students" are not /!

to be construed as being special problems,

i
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T. If Md = mean of domain; M, = mean of range, then
Mr = ch’ + h.

Proof: 1If we let ¥y = cxi + h, then

n n
Mr = -:-L-Zy = EZ(CX

n n 1 + h)
i=1 i=1
)
=1 + by Problems 3 and 4,
n (CZX.i Ln) Section 8.5
i=1 i=1
n
=1 (CEX1 + hn) by Problem 6, Section &.5
=]
n
_ o 1 1 by properties of real
=C >”Xi + h'(nh) numbers (assoc., commut.,
i=1 ete.)
= CM. + h by properties of real
R | numbers, definition of Md‘

8. The mean of the 80 numbers is 1093.6.
a. The means of the 10 rows are 1078, 960, 1158, 1172,
1048, 1044, 1106, 1208, 1106, 1056. The mean of
these 10 numbers is 1093.6.
b. An easier method might be to average the 5 columns,
then find the average of these 5 numbers.
9. Mean = 34,75
10, Answers will vary.
11, The mean of the ungrouped' data (to the nearest tenth) is
56.1, From the frequency table, a mean may be calculated

by the method of Example 2. Answers will vary slightly

70
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but should be close to the mean calculated for the
ungrouped data.
12, Answers will vary.
13, The mean (to the nearest 10th) is 41,5, The median is U5,
14, Mean = 5,65
15. Mean = 75,166
16, a. $14,500 b. $96.67
c. No, because the frequencies are different
»170 a, 1105 - 12¢5’ 1205 - 1305’ etcc
7o
b. {
o

140

20
I A i =
S 15 135 145 565 1S5 1.5

Frequenzy Histogram
—
/

400[
300 |

200 |

11 12 13 14 15 16 17

Cumulative Frequency Polygon

) ¢
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18. The sum of the H observations given 1s 2104, If the

missing observation is x, then'g19&7395 = 35C.

Solving, x = 346,

19. Z(xi “E)® 4 n(F-a)t =) (%, - 26, + %) + n(® - 2%a + &)
in"‘
(recall \Zoci = nx) = zxi"’ - 2n¥® + 2nx® - 2nXa + na®
i=1
E:xiz kaia + E;?
= zkxia 2x.8 + 8?) = ZKxi - a)?

8.8 Measures of Dispersion (Time zstimate for 8.8 and 8.9 = 3 days)

222;:1+m?+m‘c"’ - 2nXa + na?®

n

The purpose of this section is to lead up to and then
introduce the variance and standard deviation by first
demonstrating a n2ed for a statistic for measuring dispersion of
data and then examining various possibilities for meeting this
need. 3Before the students have read the text material, it might
be desirable to state the problem (relying on the examples of
Figure 8.7) and ask them for a proposed solution., Indicating the
mean in color may be helpful, At this time it 1s important to
discuss using the sum of the deviations from the mean as one
possible solution. Before giving a formal treatment as in the
text (using Theorem 1 to show that this sum is 0), the teacher
might use the following informel diagrammatic approach: Using,

for example, Figure 8.7 (b), indicate the mean (5) in color,

'
“A
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Now connect by arrows the symmetric pairs of data; e. g. &4 and
6 are symmetric and 3 and 7 are symmetric. Since the elements
of each paif are the same disiance from the mean, but in
opposite directions, the total deviation of each palr is zero.
In other wozis, each palr "balances out", Hence the sum of
all the deviations 1s 0. For non-symmetric data it is not as
easy to show in thils way, but the argument is essentially the
same: The sum of the left-hand distances from the mean equals
the sum of the right distances from the mean, so the sum of
the deviations must be 0. If this 1s the approach used, it
should of course be followed by the formal treatment of the
text. If Theorem 1 was covered lightly before, this would be a
good point to go over the proof.

At some point elther at the end of this section or of
the next, the teacher should check to make sure that the students
have a good intultive understanding of what these new statistics
are describing in contrast to those that have already heen
studied (that is, of dispersion versus central tendency).

Note that the students will need some knowledge of square
root to understand and compute the standard deviation. Section
14.7, Course I describes ocne convenient algorithm that may be
used to find square root. This can be taught quickly if students
are not already famlliar with it.

8.9 Exercises

These exercises will give the student computational

QO practice with variances and standard deviations and will lead him

DN LY
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to discover properties for these statistics analogous to
properties he has already found for the mean--~namely, how the
variance and standard deviation are affected by adding or
multiplying the data by constants. As the first three problems
are entirely computational, the teacher may choose to omit one
of them, depending on the class. Problems 4 and 5 are discovery
exercises leading to the generalization asked for in Problem 5
(that adding a constant to the daia does not change the variance).
A11 students should do either 4 or 5 and should try Problem 6,
and 6 should be gone over in class. Similarly, Problem 7 is a
discovery exercise leading to the generalization of Problem 8
(multiplying the data by a zonstant will result in multiplying
the variance by the square of that constant). All students
should do 7 and try 8.

The results of Problems 6 and 8 may be demonstrated
intuitively, If a constant is added to the data, the data is
merely "moved over" on the axis. The mean is increased by the
amount the data is moved--the additive constant--and the
dispersion, and herice the varliance, is unchanged. Under
multiplication by a constant, the data is spread proportionately--
it becomes more (or less) dispersed-~so that the standard

deviation will change proportionately.

276
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Answers to Exercises
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2, a. Mean = (22 + 26 + 20 + 31 + 26) + 5 = 125/5 = 25,
Median 26, | |
‘b, Mean absolute deviation = (3 +1 +5 + 6 + 1) + 5 = 16/5 = 3.2,
(=32 + (3)* g-s)= + (8)% + (1)*_ 444
d. Standard Deviation = VIZE = 3.8 approx.

¢. Variance =

3. The m=asures are: 347, 351, 358, 345, 350, 353, and 3465,

Deviations from the mean are -3, +., 48, -5,.0, +3, -4,
The squares of @he deviations are 9, 1, 64, 25, 0, 9, 16.
The sum of the squares of the deviation is 121,

The variance = 124/7 = 17.71
The standard deviation = VIT.7T = 4,21 approx.

b, Mean = (8 + 10 + 24)/3 = 42/3 = 14
Variance - {=6)% + ('g)a t {1o)°=‘15§ = 50,66
Standard deviation = V50,66 = 7.12 approx.

&. 5,7,21 r4ew=ii—1§L?-1- =11
Variance = {2812+ (=0)7 + (10)* _ éég = 50,66
| 3 o
~ Standard Deviation = 7.12 approx.

218
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b. The mean is decreased by 3. The variance and the standard

deviation remain the same.

Mean = (1 + 6 + 8)/3 = 15/3 = 5,

Variance = (i) +3(l)z + (3)°_ 26 + % o 2% = 8,66

The variance of the new meacures wiil be 8,66,

,  To show that the yariance of a set of measurements is not

changed if a constant is added to each measurement.
Given: Set X4 of measurements
Let yi;= xg + k
2 _ N _ V3 .
Now s2 = ;z(xi x) (1)
6 = D - )3
and 53 = Dy, - §) (2)
We already know that if
yy =% +k
- Then
¥y=3X+k
Let us substitute these values in (2)
2 _ ob) T 2
sy = JZ(x1_+ k - (X + K))

- Bixy - 07 =2

Pl
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7. The mean of the numbers -1, -3, 1 is -1,

The mean of the original set is 9000 - 1 = 8999,

The deviations from the mean are 0, -2, +2,

The sqQuares of the deviations are 0, 4, 4,

The sum of these is 8.

The variance = 8/3 = 2.66,

The variance of the original set of measurements is 2.66,
8. To show that if each of a set of observations is

multiplied by k (a) The variance is muitiplied by k®,

(b) the standard deviation is multiplied by k.

Glven: The measurements Xy and ¥y o= Kxi.

. 3 _ o223
To show: Sx sxk
a _ 1Y Y
Sx = nl.(xi X)

si, = %E(yi - ¥)?

We already know that if y; = kx, then ¥ = KX

]
=
-
g
[

1

g
s

2
SW%&WM&sy i




8,10 Simplified Computation of the Variance and the Standard
ﬁevgafion (" Time estimate for 8.10 and B,11 = 2 days)

After having completed the previous set of exercises,
the students should be eager tc learn some short-cut devices
for calculating the variance and standard deviation. The
teacher should do carefully, in class, the derivation given
in this section. It might be desirable to begin this material
before the students have read it, and tc try to get them tc
supply the main line of the argument., Start with the definition
of the standard deviation and ask the students to expand 1it.
There is a natural procedure to follow in proofs of this type,
and hopefully the better students will have begun to pick it
up.

It might also be desirable to work out (in class, as an
i1lustration) one of the previous homework exercises using the

shortcut.

8.11 Exercises

Students should be expected to do at least 2 of these
problems., The solution to Problem 1 is given in the text.
Solutions to Problems 2 and 3 will vary; however, at least

one solution should be gone over in class.
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8.12 The Chebyshev Inequality

In any but an exceptional class, it would probably be
best to regard this section as enrichment material for the
best students. The proof of the Chebyshev Inequality involves
some manipulations and statements that are quite sophisticated
for this level. The teacher should expect that even very good
students will need some help with this material. Students
might be advised to focus first on the interpretation of the
theorem given in this section, rather than on the proof,

Later in his study of statistics, the student will see that
this theorem can be improved upon for certain assumed
distributions; for example, if the data 1s assumed to follow &
normal frequency distribution, approximately two-thirds of the
data will lie within one standard deviation of the mean, and

about 95% will lie within two standard deviations of the mean.
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Note that the Chebyshev Inequality, in contrast, states only

that not all of the data will be farther than one standard

deviation from the mean; further that at least 3/4 of the data

will lie within two standard deviations.

8.14 Review Exercises

l. a.

= oW U v

I[J]I

|

A,

25

20

15
10

¢c. Median

d. The mode is 56.

The interquartile

f, &

h,

9 50 51 52 53 54 55 5€ 57
100
2% /‘
D%
4%
26%
49 50 51 52 53 54 855 56 57
= 54, Lower quartile = 52, Upper quartile = 56.
e. The range is 57 - 49 =8
range is 56 - 52 = 4
1 Yy = %4 - 53 X Ty £,9y £33
1 -4 49 -4 2401
2 -3 100 -6 5000
1 -2 51 -2 2601
3 -1 156 -3 8112
2 0 106 0 5618
I 1 213 4 11664
3 2 165 6 9075

209
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56 7 3 392 21 21952 63
57 2 I 114 8 6498 32
2 2s5. 1349 24 72921 152
-‘x,.f.
)-C _)4 1 1 - 13“% - 53 .96
. .
i
X =3 +53 y = %% = .96
% = .96 + 53 = 53.96 |

.2 :
g2 =zfiki . 53
X £,
- 1

_ 7292) _ pgy-

= o 91", ,6816
2916.84 - 2911,6816
5.158%4

_ .3 _ 152 _ _
s =8 = 12z - (.96)° = 5.1584
5 = %y * VETIEET = 2,27

2, a. The range is 4300

b. Interval Midpoints Frequency Cum. Freq.
Boundaries b'4 ' £
i i
23,000 - 24,000 23,500 1 1
24,000 - 25,000° 24,500 1 2
25,000 - 26,000 25,500 3 5
25,000 - ={,C0 26,500 2 Z
27,000 - 25,000 27,500 1 ¢
28,000 - €9,000 24,500 3 11
29,000 - 30,000 29,500 3 14
20,000 - 31,000 30,500 2 16
31,000 - 32,000 31,500 1 A7
32,000 - 33,000 32,500 2 19
34,000 - 315,000 34,500 L 26
25,000 - 36,000 35,500 1 27
44,000 - 37,000 "~ 36,500 1 28
37,000 - 38,000 37,500 2 30

X,
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Interval Midpoints Frequency Cum Freq.

Boundaries X5 f‘i
22,000 - 24,000 23,000 1 1
24,000 - 26,000 25,000 4 g
26,000 - 28,000 27,000 3
28,000 - 30,000 29,000 6 14
30,000 - 32,000 31,000 3 17
32,000 - 34,000 33,000 5 22
34,000 - 36,000 35,000 5 27
36,000 - 38,000 37,000 3 30

c. In the first grouping the mode is 34,500. 1In the
second grouping the mode is 29,000.
d. With the first grouping:

47'

3--

2-o

1T

P D R oo P B RBERBE T BY %2 2 3
EEERER R R R AR R

With the second grouping:

6

5

4

3

2

1
.3.'3}‘-3.33?3¥2£
8§ 8 & & B & B8 8 ® ® %
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e, Cumulative frequency polygon with first grouping:

30T 180%

15 d= = 50%

§ ¥ 5 ¥ i3 $

8 § § ¥ § &

9.5
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f. With the first grouping:

Calculated median = 30,500

With the second grouping:

Calculated median = 31,000 A
One convenicnt transformatioﬁ to use for the first method
of grouping is y,; = Iﬁﬁ%xi - 29,5,

We obtain the table:

Xy £y Yy £y, £193
23,500 1 -6 -6 35
24,500 1 -2 -5 ﬁg
25, 500 3 - ~12
26, 500 2 -3 -6 18
gg,soo 1 -2 -2 L

»500 3 -1 -3 3
29, 500 3 ¢] 0 0
30,500 2 1 2 2
31,500 1 2 2 L
32,500 2 3 6 18
33,500 3 L 12 L8
34,500 L 5 20 1.00
35, 500 1 6 6 35
36,500 1 g L9
37,500 2 16 128
), 30 37 519

. Then
7 = %% = 1.233
X = 1000y + 29,500
X = 1233 + 29,500
. = 30:733
a _ 519 _ 2
sy = 5% (1.233)

= 1507789
sy = v 15 .7:8.;

= 3.97

R37
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2 = . 2 . a2
s? = (1000) 8%
= 15,778,900
Sy = 1900 . sy
= 3970
In the second method of grouping we might make the
transformation
| o1 - 31
Yi = 2000%1 - 72
' )
Xy Ty ¥y Iy £y
23,000 1 -4 -4 16
25,000 I -3 -12 35
27,000 3 -2 -6 12
29,000 6 -1 -6 5
31,000 3 0 0 0
133,000 5 1 5 5
35,000 5 2 10 20
37,000 3 3 9 - 27
Y 30 -4 122
Then
. .
y = 3‘6 - - 0133

i
]

2000y + 31,000
-266 + 31,000
= 30,73“

s = 435 - (-.133)°

4,0666 - .0LTT
4,0489

2.01 - 238

e
(7
n
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[

& = (2000)°(s3)

(4,000,000) (4.0489)
16,195,600
(2000

)(sy)

4020
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Chapter 9
Transformations In The Plane: Isometries

Time Estimate For Chapter: 25 - 28 days

This Chapter continues our study of geometry. The background
for this continuation is considerable. Students have had
experiences with proofs and some appreciation of the nature of
an exiomatic system. Of great importence to our purposes in
this Chapter are coordinates, for they will make possible a
simple presentation and a facile method of' proof. However, &
continued reliance on coordinates leave some students with the
impression that the use of coordinates 1is mechanical, and this
is unfortunate. This Chapter should help to remove this unhappy
impression.

When Euclid proved his triangle congruence principles he
moved triangles about to make one coincide with another. He
must have been uneasy sbout those motions for he does not use
this technique as a regular practice. Besides, he must have
known he was moving something theat was not physicel. Yet in
these motions lie the beginnings of the subject matter of this
Chapter, which studies the nature and properties of "rigid
motions", the mathematical counterparts of physical motions.
We reecognize four such "motions", refleétions in a line
(symmetry in a line) translation, rotations asbout a point (in-
cluding & half-turn about & point or symmetry in a point) and

glide refleetions. It is essential to regard these as specisal

cases of transformations, that is, mathematical one-to-one
\‘1

27)
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mappings of the entire place onto itself,

The set of rigid motions constitute 8 group under the
operation of composition. They differ from other groups of
transformations in their preservation of distance. We call the
set of rigid motions the set of isometries.

A word of caution concerning rigor. While we want students
to understand what rigor means, we can't expect them to conduct
themselves as though they were professional mathemsticians who
are publishing for other professional mathematicians. Chapter 4
and the first parts of Chapter 6 are occupied with teaching the
concept of rigorous procedures. In this Chapter we relax
standards of rigor. Occasionally we rely on ptctures; sometinmes
we omit consideration of specisl cases in the interest of
avoiding the practice of "nit-picking" which can be so deadly
to the interest of most students.

Another word of caution. There are a great variety of
transformations. Our main concern is with plane isometries. But
1t would be unfortunate to leave the impression that isometries
are the only kind of transformation. We try to dispel this
impression in Section 9.19, where we present some elementary
notions aboﬁt dilations (homotheties) and similarities. Other
types of transformations ﬁot mentioned in this Chapter are per-
spective affinites, affine transformations, prejective trans-
formations and topological transformation. These are studied
in advanced grades.

And a #inal word of caution. After students have studied

001
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isometries they will have two main methods of proof: . using
coordinates or using isometries. They should be encouraged to
develop skill in the use of both methods. It is unfortunate
that success in the use of one of those methods tends te
discoufage use of the other,

A word sbout the general structure of this Chapter. After
explaining what plane transformations are (Section 9.1) the
special ceses of isometries are introduced (Sections 9.3, 9.5,
9.7, 9.9). These presentations are guided by two objectives.
(1) To show that all isometries are compositions of line
reflections (three at the most). (2) The set of isometries,
under the operetion of composition, 1s a group. This overall
view may help to explein some of the exercises in the early
exercise section. For instence it is not too early to look at
the group features at the outset long before the word "group"
is used. The student is reminded early that composition of'
mappings 1s assoclative, from which it follows that the compo-
sition of transformations is associative. The ldentity trans-
formation must also be recognized quite early. This too helps
to prepare the student for an understanding of groups of

transformations and subgroups.
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9.1 What is a trensformation? (1 - 2 days)

It is advisable to review thelmeaning of mapping and
operational system.

Since composition of maps F and G is possible when the
range of F is equal to the domain of G, and the domain and
range of all our transformations are the set of polnts of a
plane, it is simple matter to compose two transformations in
& plane. It 1s a short step to conclude that composition of
plane transformations is associative, for we have already
concluded that composition of mappings is assoclative.

In studying some of the transformations students should
be encouraged to look for properties that are preserved.
These searches can be based on drawings. Of course the basic
property that interests us is the one that preserves distance;
that is, the distance between any two points is equal to the
distance between their image points. An interesting trans-
formation is found in Exercise 8 of Sectioh 9.2. Under this
transformation the distanée between an infinite number of pairs
of points is preserved, but for another infinite number it is
not. Among other properties students should look for are
preservation of collinearity, betweeness relation for points,

parallelism between two lines, and measure of angles. It would

003
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be instructive to look for properties that do not belong tc
transformations. .

Exercise 4 contains many exercises of meppings in terms of
coordinate rules. Students should do most of them, if not all,
for coordinate rules are going to be an important mathematical

asset in this Chapter. Also they are interesting.

9.2 Exercise Solutions

1. | |
N/ | A

This mapping is a transformation because it's a mapping
of the plane onto itself and is one-to-one, To locate
the origin of D', teke D such that D', 0, D are collinear
and OD = % ob!', |

2. The flgure above can be used if each letter and its "prime"
are interchanged. To find the original of D' take D such
that D', 0, D are .collinear and OD = 2 OD!'.

3. A(-2, -1)—A' (1, -3)
B(0, 4) »>B' (3, 2)
c(3, 2)- >' (6, 0)
D(1, -3)———>D' (4, -5)

This procedure is a mepping because a unique image is

assigned to each point. It is a transformation because

the mepping is onto the plane and is one-to-one. To find

204
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the original of an image use (x, y)——>»(x-3, y+2).

}

] b C d e f
ar | 2,1 l2,-1) | eor) | -1y | (es,1) | (-8,-1)
B' | (0,-4) | (0,4) {[(0,-4) (0,4) (0,-4) (0,4)
¢ | (3,-2) [(-3,2) [(-3,-2) | (9,2) [ (-9,-2)] (27,2)
p' | (L,3) {(-1,-3) | (-1,3) { (1,-3) | (-1,3) | (1,-3)
g h ! J k 1
a1 (-8,0) | (4,1) [ (<2,-4) | (+1,-2) | (-3,-1) | (-3,-4)
B' | (0s5) | (0,16) | (1,1) (4,0) | (4,-4) (-4,8)
cr | (27,3) § (9,4) (7,-1) | (2,3) (5,1) (4,7)
o (-2 [ o | G-o)l (3,1] 24 | 5,5)
a) Transformation P'(a, b)———>»P(a, -b)
b) Transformation P'(a, b)——>P(-a, b)
¢) Transformation P'(a, b)——>P(-a, -b)
d) Mapping but not a transformation - neither onto nor
one-to-one
e) Mapping but not a transformatien - neither onto nor
one-to-one
f) Transformation P'(a, b)—>P{E, b)
g) Trensformation é'(a, b)—>P@P%a, b-1)
h) Mapping but not a transformation - one-to-one but
not onto
1) ‘Transformation P'(a, b),——)P(ﬁé-]-'-, b+3)

‘)fﬂs
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3) Transformation p' (a, h)—>P(b, 8)
k) Transformation p' (8, b)—>p(&2, .8_.52)
1) Trensformation p'(a, b) >p(eg-b’ 2;-8)

A A

This is both & mapping and & transformation. It is
worth noting that for each point P, PP' = 20,02.

AI
Tt is both a mapping and a transformetion. To find the

original of P' take P, such that O, is the midpoint of
PP, , then find P (the original of ?) such that P,, O,

and P' are collinear and 0,P = %O,P,.

A—E%yp, s
f h
A—-—)A,———OE—)A:,

Since this is true for 2ll A we may conclude that the
composition of trensformations in a plane is associative.
(This result will be used later in the chapter in connection
with a study o7 groups of transformations).
Yes. Assignments are unique; the mapping is one-to-one end
onto. Therefore it is & transformation. (Note. This
trensformation has none of the interesting properties

belonging to isometries and similarities).

206



- 292 -

9.3 BReflections in a Line (1 - 2 days)

Students have already had a2 look at these transformations
E in Course 1. But it would not be a wesste of time to introduce
them sgain through paper folding activities, noting its
characteristics and what it preserves. But this should be done
quickly and lead to mathematical considerations.

We spend much time to establish the distsnce preserving
property of reflections, for this stamps them as isometries.
But more than this, this property leads to the establishment of
a list of other properties. This list is developed out of
students experiences with the exercises in Section 9.4. Being
exercises should not diminish their importance, and for this

reason a summary of these properties appears at the end of that

3

section. Your students may want to refer to that summsry more
than once. Most important is the fact that these properties
may be "inherited" by all other isometries, for it will be shown
that other isometries can be regarded as a composition of line
reflections. Thus any property that survives in such & composition
belongs to the composition.

Reflections in lines which are not parallel to an sXis
will be studied in Course III. Reflections in liney = X or

¥y = -X may be tried in Course II if desired.

9.4 Exercise Solutions:

1. (a) (3: "5) (b) ("3: "5) (C) ("3: 5)
(d) W%, 5) (e) (3, 0) () (0, 3)
(g) (0, 0) (n) (2, -b)
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2. (a) (-3, 5) (v) (3, 5) (¢) (3, -5)

(d) (2, -5) (e) (-3, 0) (£) (o, -3)
(g) (0, 0) (n) (-a, b)

3. (8) 2 =% (3 + Xp)=——————3%, = 1A' (1, -2)
(b) 2 =% (-2 + X9 )———>x, = 6 .. B' (6, 5)
(c) 2 =% WZ + xg)~—————9% = 4 -JZ . C' (4 -VZ, 3)
(d) 2 =% (a + Xo)————>X, = 4 - a~ D' (4 -2, b)
4. (a) -3 =% (3 + xg)———>x, = -9~ A" (-9, -2)
3 =% (-2 + Xy)————Pxy = -4 » B' (-4, 5)
(b) 1 =% (-2 +y)——>y, =4 A" (3, 4)

1=%(5+y,)——>y, = -3~ B' (-2, -3)
(¢) -2 =% (2 + yg)——3y, = -2 = A" (3, -2) .
2 =% (5+yg)——>V¥p = -9 B' (-2, -9)
5. () A (4, 2)—Rg—yA' (-4, 2), B (-1, 5)—Ry—>B' (1, 5)
AB = VTIFI)™ ¥ (2-5)7 = V3B
A'B' =TI ¥ (25)% =V |
(b) a0,5) ™ ar(o,5),  B®, -1) YV B4, -1)
AB = v (0-F)* + [B+1)F =452
A'B' =NTOH)T + (5+1)% =52
(c) A(-2, 0)—RL—wa1(2, 0), B(0,-5)—LEL—>81(0,-5)
AB = v {Z =01 ¥ (05" =29 |
A'B' =4T(2-0)" ¥+ (0F5)° =23
6. AB + BC = AC because B is between A and c.
AB = A'B', BC = B'C', AC = A'C' because RL is an isometry.
A'B' + B'C' = A'C' because of the substitution property of

o0g

Full Tt Provided by ERIC.
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(a) If B' is not in A7C" then A', B' Q' are vertices of
a triangle and by the triangle inequality theorem
(See Course 1 Chapter 10) A'E' + B'C' > A'C!',

(v) TIf A' is between B)C' then B'A' + A'C' = B'C', or
A'C' = B'C' - B'A', But A'C' = A'B' + B'C', .~ A'B' =0
or A' and B' are not distinct points. This implies
that A and B are the same point - a cuntradiction.
Similarly, C' cannot be between A' and B! (we have

not considered the case A!

B' or C' = B', for this

lesds easily to A = B or C = B).
By Exercise 6 the betweeness relation for points is preserved
under a line reflection. It follows immediately that
collinearity is preserved since the betweeness relation
implies collinearity.
The reflection of the endpoint of a ray is a point. For
any three points of the ray, of which one is the endpoint,
their images under a line reflection have the same betweeness
relation as their originals., Therefore the images of
all interior points of the ray are collinear and on the
same side of the image of the endpoint. Therefore the
image of a ray is a ray.

A similar argument can be made, applying to both
endpoints of a segment., Hence the image of a segment
under a line reflection is a segment.
(a2) By Exercise 8 the images of the sides of LAOB sre
rays having the same endpoint, 573* and 573* . Let C

299
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be any point between A and B. We may assert that OC is
a ray of LAOB. The image C' of C is betwezn A' and B'.
Therefore o'ci’ is & ray between O'A‘I and 6_"3-7) Hence

the image of LAOB 1is LA'0Q'B'.
(b) y-axis '

10. If £ is the x-axis, %, may have the equation y = k, 2,5

the image of f£,, under R, is y = -k. Therefore L, 1] 2a.
11. Let 2 be the x-axls of a rectangular coordinate system.

Then £, may have equation of form x = k., Since (x, y)

Rx (x, -y). The image of x = k is x = k,. Therefore

4y = 1.
12. Using a rectangular coordinate system with £ a3 x-axis

we may essign (2, b) to P. Then P' has coordinates

(a, -b). The image of P' under R, is (a, -(~b)) or (a, b).

Therefore P = P, .

9.5 Translations (2 - 3 days)
' The first step in presenting (reviewing) this transformation
can be teken with the ald of an overhead projector. Let the

base be a coordinate plane, and prepare'aﬂ transparency which
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is also coordinated by the seme set of lines as the base.

(The axis numerals should appear only on the base). Start

the demonstration with the transparency coinciding with the

base, mark a set of points on the transparency (include the

origin), mark their coordinates, move (glide) the transparency

(with no rotation components) to & new position in which

(0, 0) appears over, say (2, 3). Then 1list the original and

image coordinates, point for point, until the rule (x, y)—>
(x + 2, y + 3) become clear.

An important theorem shows that & translation 1s the
romposition of two line reflections in parallel axes, The
order of the line reflection 1s Important. A reversal of
order results in a different translation, in fact, the inverse
translation. Another amazing featufe is that any pair of axes
can be used, if they satisfy the direction and distance
requirements, to producé the same translation.

Thus & given translation can be regarded as the compositlon
of an infinite number of pairs of line reflections, in parallel
axes. You may have to clarify what is meant by the distance
between two parallel lines.

The section ends in & mass inheritance from the 1list of
properties of line reflections. This inheritance procedure

will be repeated in discussing rotations and glide reflections.
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9.6 Exercises

All problems are necessary for clear understanding
and will be used es reference in later development.
Prior to assignment, there should be discussion of
mathematical usage of the letters "x", "y", and "z"

-~ used as variables -- and the letters "a", "b", and
"c" denoting specific numbers. In exercises 2(d), (e)
and (f), you can really bring the usage to light through
discussion of errors which will definitely crop up..

0.6 Exercise Solutions

1.  (a) (4, 3) (b) (-2, 3) (e¢) (-2, -1)
(d) (9%, 4%) (e) (L ++~2,2) (f) (0, 1 +V73)
(g) (1, 1) (n) (0, 2)
2. (a) (x, ¥) >(x-1, y+1) (®) (%, y)———>(x-3, y+5)
(¢) (X Y)——>(x43, y-5)  (d) (x, y)——>(x-5, y-15)
(e) (x, y) S(x-e,y-b)  (£) (x, y) >{(x+a, y+2b)
2. A0, 2) > A (-1, 4), B(5, 1) >3 (4, 3).

(a) A translation is an isometry and preserves distance
WT+27 =471+ 27).
{b) Under an isometry the image of a segment is a

segment. :
_2-1_ .1 141
(¢) Slope of fB = &% =-% . Slope of B - =g
o T u1d




(e)
(£)

()
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Slope of ﬁ‘? —-T = -2, slope of 3]‘3-')= %’-}:3[ = -
»TUATE -

AA' =NT?T ¥ 29, BB' =417 + 27 - AA' = BB',

Since the sides in each pair l1lie in parallel lines,
ABB'A' is, by definition a parallelogrem.

The diagonals of a parallelogram‘bisect each other.
Alternately, the midpoint of AB' has coordinates
(2, % ). The midpoint of A"B also has coordinates
(2, %). For the general proof we may start with
AA' = BB' and AA' || BB'. These conditions reflect
the nature of a translation. If we assume that
ABB'A' 1s a parallelogram 1f a pair of opposite
sides have the same length and lie in parallel
lines the proof is complete. Otherwise we may use
a coordinate proof starting with A(x,, ¥ ),

B(Xs, yz) and o translation with rule (x, y) =
(x+a, y+b). Then A' has coordinates (x, + &, y3 + D)

and B' has coordinates (xs + a, ya + b).

To prove ﬁ_’ll i'Ba and ﬁ ? I FE” use slopes.

Slope or §B°= —1———X3-and slope of STEY - %}—E—%ﬁ

This suggests a consideration of two cases: (i)

X, = Xa, in which case XB and A'B" are parallel

1
to the y-axis and hence to each other and (ii)
X, # Xa, in which case AB and A'B'" have equal
slopes and are parallel. To prove ﬁZ' N SB'lwe
nﬂf’)“

er
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«>
work with slopes g-and gu a = 0, implies AA!
and BB' are parallel to the x-axis, ete.

4, (%, yle—Ii s (x+3, y-2)———23—<>(X+4, y+1).
(x, y)—12 O T o (x4l yi1,

This shows that T, 0 Ty is a translation.
a3, 2 T 2T (7, 3)
B(-4, 0y} T ° T " S(p, 1)
c(-2, 51T ° T (2, -u)
5. (2, 3T 55, 10T (2, 3)
Thus (2, 3 — 2 ° T (2, 3)
This suggests that T, © T, = 1.
(-2, 8)—R—3(1, 6)—I=—3(-2, 8).
(a, b) —h—> (a+3, b-2) —L2> (a, b).
(x, y)—2> (x-3, y+2) —B—3 (x, y).
Therefore T, © T = i,
6. (a) T(ate, b+d) (b) T(-a, -b) (e) (0, 0).
7. Using the notation of Exercise 6,

T(c+a, b+d)

T(a, b) o T(e, 4d)
T(e, d) o T(a, b)

T(a+c, d+b)
Since a+c = c+a, and b+d = d+b for all real numbers
T(a, b) © T(c, d) = T(e, d) © T(a, b).
8. () (2, 0" y(-2, 0)_Ta (10, 0).
and (2, 0)—2(8: 0) (10, 0).
) (3, -4 R (-3, - P (1, -4)
and (3, -4)— T8 0) <11, .4,

an
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(¢) (10, -3)—RL (10, -3)—F0 (18, -3)
and (10, -3—2(8: O) 518, .3y,
9. ILet RR, =F. Then (RR,)(RR ) = F(RR ).

Using the assoclative property we may write

Rm(R‘Rz) R, = F(RLRm).

But Rsz = 1 since line reflections are involutions

and Rmi = Rm' So
Rofm = F(RyR)
i F(Rng).

Therefore F is the inverse of Rsz. Since the latter is

not i, in general, then F # RyR .

Proofs by coordinates are also available. The
general result may also be stated as follows: If RmRz =
T(a, b) then R,R, = T(-2, -b). This tells that the
distances of the translations are the same, but they

have opposite directions.

10. Compositionsof transformations are associative. Since
translations and line reflections are transformations,
compositions of translation is assocliative snd also
composition of line reflections.

11. Exercise 6 snswered this in terms of the notation T(a, b).
In terms of cocrdinate rules we may say, if T, has rule
(x, Y)-—-!a———€>(x+a, y+b) and T, has rule V

(x, Y)——-EL-—€>(X+C, y+d), then
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(x, ¥) T, o T, o (x+a+c, y+b+d)
(x, y)———ILJzJEL—€> (x+c+a, y+d+b)

12, The composition of two line reflections has been shown to
be & transiation if thelr axes are parallel. Since a
translation is not & line reflection the answer to the
question is no.

13. (a) The set of all translations in a plane &and the

operation of composition is a group becauée:
(1) The composition of two translations is @
translation (See Exercise 11).
(11) Compositions of translations (transformations)
is associstive, (See Exercise 10).
(111) 1 = T(0, 0) (notation of Exercise 6). Then
(0, 0) ©T(a, b) = T™a, b)0 T(0, 0) = T(a, b).
(iv) T(-a, -b) is the inverse of T(a, b). |
" (b) The set of line reflections with composition as
operation is not @ group since it is not an operation;
- al system. (See Txercise 12),

4. R,oR, = T(0, 0). (See Exercise 12 Section 9.4).

9.7 Rotations and Half-Turns (4 daye)

‘'The first step in presenting (reviewing) rotaetions can
be teken with the éid of an overhead projector. Using a grommet
fasten a transparency to its base at a point near its center.
Acetate sheets for the overhead projector are available in

o - JNR




- 302 -

E many colors at reasonable prices. Since even the writing
% with megic markers may be washed off. Larger sheets may be
used over a white background without using the overhead
projector. See problem 16 in Section 9.8.

Mark a set of points (see Figure 9.8) and the lines through
them on the base, and on the transparency so that a point of
the trarssparency coincides with a point of the base. Then

rotate the transparency, through 30 degrees, say. This activity

should clarify the nature of a rotation, and embark the
student on explorations of rotations. Ee careful to define
; positive and negative directions for rotations respectively,
| counter-clockwise and clockwise. Sooner or later students
will confuse the measure of an angle with the measure of a
rotation. An angle is not the same as a rotation. An angle
1s 8 set of points. A rotation is & transformation. The
measures of angles vary from O to 180 (including O and 180,

in some books, excluding them in others). The measure of

rotations can be from -360 to +360, for our present purposes,

2 and the set of &all real numbers for other purposes.

| The basic theorem in this section asserts that every
rotation can be regarded as the composition of two line re-
flections whose axes intersect. A reversal of order of the
line reflections results in a different rotation, in fac+,

the inverse rotetion. Also of interest is the fact that there

are an infinite number of peirs of line reflections that

ERIC 7
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produce the same rotation. This leads to the conclusion
that rotations are isometries and inherit properties of line
reflections that survive a composition.

We restrict composition of rotations to rotations about
the same center. The questicn may arise whether or not the
composition of two rotetions about & different center is
also a rotation. A proof that this composition is a rotation
1s found on page 56, of Jeger's "Transformation Geometry."
If the centers are O, and Op, the proof decomposes the first
rotation (about 0, ) into two line reflections whose second
axis is <6;‘6?, and decomposes the second rotation (about Og)
into two line relections whose first axis is a-lso<'0_,'6§. The
center of the resultant rotation is the intersection of'the
remaining axes, and the measure of the resulﬁant rotation
is the sum of the measures of the componeht rotations.

We have treated half-turns as special cases of rotations
where measures are 180 degrees. This implies that a point
A,, Its image A', and the center 0, of the rdtation, are
collinear with 0. the midpoint of AAT. For this reason a
half-turn is also known as a symmetry or a reflection in &
point, ‘

The coordinate formula for a half-turn about (&, b) is
important and should be remembered for exercises that follow.

You maey have to review the midpoint formula.
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9.8 Exercise Solutions

B’

2. Since a rotation is the composition of two line reflec-
tions it has the properties that are conserved in the
composition of two reflections. Therefore the images
A},_Bu C' are collinear; B' 1is between A' and ¢';

AB = A'B', AC = A'C', BC = B'C!'.
3. r(p, 20) © r(P, 20) = r(P, 50)
1e o (B 20) o r(Ph 30) 5 i, then

mLAPA, = 20, mlA,PH' = 30, PK, is between

7% and'ﬁKT>; hence mLAPA' = 50, Also
PA = PAy = PA' or PA = PA!
Therefore A r(p, 50) > A,
4, (a) r(p, 60) (v) r(Q, 10)
(c) r(p, 170) (d) " r(Q, 0)
5. Then inverse of r(P, 0) is r(P, -9).

anq.
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6. The system (r(P, ©), 0) is an operational system for
r(P, 8,) © r(P, 8;,) = r(p, 8,49, ), is associative for the
reason that it is a transformation: r(P, O) is the
identity rotation, and the inverse of r(P, ¢) is r(P, -9)
because their composition in either order is r(P, 0).
7. (&) (3, 2) () (2 -3) (e) (0, 2) (4) (~Z ~3).
8. Using the rule (x, y)——> (28 -x, 2y -b) where “
(a, b) is the cenﬁer of the half-turn., The images of A,
B, C, D are respectively:
(a) (2-3, -4+2) = (-1, -2)
(b) (242, -4-3) = (4, -T)
(e) (2-0, -4+2) = (2, -2)
(a) (2 -2, =4 +43).

9. (-2-3, 6+2) = ('5: 8) .
('2+2: 6'3) = (0: 3) ("2 "“/2-: 6 "\/3. )
(-2-0, 6+2) = (-2, 8)

10. Taking the center of the half-turn as ihe origin of a
rectangular coordinate'syétem |

2 (%, y)—Bs (x, ).

Ho e Ho > (x, y) eand Hy 18 an

(x, ¥)

‘Therefore (x, y)

involution.
11. Let P(a, b) and Q(c, d)  then:

HP HQ '
A(x, y)————> A, (2a-x, 2b-y) > A (2c-2a+x,
2d-2b+y)

The rule of HQHP 18 thet of & translation with rule

(x, ¥) > (x+2¢-2a, y+2d-2b)

CERIC 719
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d-b

The slope from A to A' = T8 ° From P to @ the slope
is gf% . Therefore AA' || PQ and KI> and §Q> have the

same direction. Also AA' =+I(a-c)® + §(v-d)*
2 JTa-c)® + (b6-d)* = 2PQ

Using data in Exercise 1l
Q p° (x, y)—m—m—m— (x + 2¢ - 2a, y + 24 - 2b)

on the other hand
HpHy (x, y)———> (x + 24 = 2¢c, y + 2b - 24)
HQH = H H iff a =cand b =4 so,

given PHé Q then HQH £ HPHQ H f,
(x, y) =222 5 (x+2a-2¢, y2b-2d)—2P 5 (x, y)
", (HPHQ) and (HbHP) are inverses.
Every line through the center of a half-turn is fixed,
not pointwise. To prove this take the center of the

H
origin and a line, y = mx. Since (x, y)———il——>(-x,_-y),

o

(x, mx) > (-x, -mx)., The coordinates (-x, -mx)

satisfy y = mx., Hence y = mx is fixed under Hb, but not

pointwise.

Let O be the origin of a rectangular coordinate system
ahd L with equation y = mx + b, b # 0, any line not
containing 0. Then (x, mx+b)——————> (-%, -mx-b).
The coordinates of the image satisfies y = mx-b, an
equation of %', Therefore the slope of £ 1s equal to
that of 4'., Hence 4 || £'.

ABB'A' is a parallelogrem because AB' and A"B having O

11
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as midpoint bisect each other. For an alternate proof
one may use coordinates and prove by the slope formula
(assuming all lines have slopes) that opposite sides
lie in parsllel lines,
a. (1, 0) ———> (8+1+b:-0,b. 1-a. 0)=(a,b)
b. (8, b) ————> (2. 8 +Db.b, b.2a -2a- p) =

(a* +1v?, 0), (1, o).

¢. Any point P on £ has coordinates (C, Eg%

be e abc v%c _
Then (C, T ) >(ac + 3T * ¢ - &= ). ac + =T =
a’c + ac + b2c _ c{a®+b%) + ac _ c+ac _
2 + 1 = a8 + 1 S T ©
be - abc _ 8bc + bc - abc _  be
a¥l a + 1 = a¥l

Therefore, P és a fixed point and £ is a fixed line.
4
d. (%, y)——————> (ax + by, bx - ay).

Applying the transformation again,

(ax + vy, bx - ay) > (a(ax+by) +b(bx-ay), b(ax+by)

-a(bx-ay)) = (%, y).
If A(x, y) is a fixed point then X = ax-by and y = bxtay.
This system of equations has a unique solution (x, y) =

(0, 0) if a #1. Ifa =1 then b =0 and the rule

degenerates to (x, y) >(xX, ¥), the rule for the

identity trensformation, which may be considered & rota-
tion through 0° . Hence this mepping, if it is not the
identity, has only one fixed point, namely O (0, 0).

b. Let A have coordinetes (é, d). Then A' has coordinates

(ac-bd, ve+ad).

7
- cady
R
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Calculating distances OA and OA',

OA =n"¢C% + &%

0'A' =4 (8c-bd)® ¥ (bc ¥ 8d)” =+ a9 T* a5 o Fat a®
=V (@ )(cTFa®] = ~*Fd®

Therefore OA = OA'.

c. (1, 0)———> (a-1-b*0; b-1+a:0) = (a, b)

("'b: a)

(0, L)———— (8°0-b-1l, b-0+a-l)
(e, -b)————> (a-a-b(-b), brata(-b)) = (1, O)
18, Let A(e, b) and B(c, O) be two points of 4.

. _ _b_
Then m = i
A(a: b)_‘&x‘_‘> A'(a:‘b): B(C, 0)_—Rx—> B'(C, 0)'
Slope of A'B' = -b

8-C = -,

A similar proof shows that the slope of £, = -m.
19, Activity

b
20. From Exercise 16, y = x is of the form y = 11 X
where a = 0 and b =1,
The rule for R, is (X, y)—————>(ax+by, bx-ay) which

now becomes (x, y) > (ys x).

9.9 Composing Isometries. Glide Reflections, (2-3 days)
This section gives speciel attention to composition of
isometries, arising out of our interest in regarding transla-
tions and rotations as compositions of line reflections. It
leads naturally to the glide reflection, another type of

isometry, and raises the question whether or not there sre

<13
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more. This question is answered in Section 9.11, where any
isometry is shown to be the composition of no more than three
line ref;ections. This section does more. It continues to
prepare the student for an appreciation of the group structure
of the set of isometries under composition.

It is interesting to note in passing that a translation
is the composition of two helf-turns about distinct centers.
This fact permits us to regard & giide reflection as the
composition of a 1line r¢ “lection and two half-turns, or a

line reflection and four suitably chosen rotations.

9.10 Exercise Solutions

1, Let 4 be the axis of the line reflection and also the
x-axia of & rectangular coordinate system. Let T ve
the translation with rule (x, y)——— > (xa,=y).
This T is in the direction of £,

(%, y)—L—> (x48, y)——_t—> (x48, -y), and
(x, y)—R—‘—-> (x, ~y)—"—> (x+a, -y)
Therefore R, © T = T O R,.
2. Since the composition of two line reflections in parellel

axes is a translation, the composition of three line
reflections described is equal to the composition of

a translation and a line reflection vwhose axis is parsllel
to the direction of the translation., By Exercise 1 this
is a glide reflection. Also by Exercise 1, the answer

to the last question is yes.

et |
s
i
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Ilet F=TO Rz shere T is the

translation component of F.

R
£ > Py T > P!,

b
v

Tet P

Then £ bisects TP, and is

parallel to P, P'. Therefore

4 bisects PP'. (The line that

(4
bisects the side of a2 triangle

and is parallel to a second side bisects the third side).
(See Section 6.17 Chapter & problem 2).

Using the data in the solution to Exercise 3, let ?ﬁ?
intersect £ in A end let 537 intersect 4 in B.

Then T

li
s

5 ° HA'

Thus F HB o) HA 0 Rz.

fi

Let the glide reflection be F = T 0 R,

Then F o F = (TOoR,) o (TOoR;)=(TOR,) o0 (Rz o T)

(See Exercise 1)

L]

T o (R0 R;) o T (The associstive property of

composition of mappings

=ToioT (1ine reflections are involutions)
=TO0T {(Toi=T)
= T (The composition of two translations

is & translation)
T' has the same direction as T, but twice the dis-

tance.

")
P
)

B
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D)}

A B A, B, is a parallelogram because its diagonals
bisect each other. In general A A,B,B, is a parallel-
ogrem (it is not a parallelogram if A, is collinear
with By, A, but AyB, = A,B, because translations are
isometries) becsuse AyBy, = AgB,and A B, end KB, lie
in parallel lines. Itrfollows that AB = ByA, &nd
?ﬁgll ?iﬂi:. Hence ABA,Bp 1s a parallelogram. There-
fore the isometry that maps A onto A, and B onto By
is & helf-turn, because the disgonals AA, end BB,
bisec® each other., (It is assumed that A, is not
collinear with A, B.) An occupation with the collinear
cases requires the following: If O is on'ﬁﬁ’it still
holds since a half-turn is en isometry and AB = A} B,
and Ay A,B,B, 1s a parallelogram by the arguement above.
7. Let T he the translation and Hb the half-turn.. Let A

—T s, B

and B be two points. et A T--——>B1.

Then ABB,A is a parallelogram end A% || $:B; and AB=Ag . LetO
be non-collinear with A, and B, then A,———jﬁl-———> A,

and B;———EEL——5> Ba. Again AyByAgB, is & parallelogram,

and X;ﬁ? ||5§?§, AB, = A,B,. Thereforeiﬁ? | ﬁiﬂﬂ?

and AB = ByA,. Therefore ABA,B, is a parallelogram and
its diagonals bisect each other. This, under the half-

turn in midpoint of BA, (or BB, ) A > A, and
B———> B. Thus H, O T is a half-turn. If O is
collinear with A, and B, we need the statement cited

in the last sentence of the solution of Exercise 6,

>
e??fﬁ
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We need to consider only x-coordinates of P and the
sequences of imeges. If x; is the coordinate of P then
the coordinete of P, its reflection in the y-axis, is
-x since 0P = OPy. If P, is the reflection of Py in
line & (with equation x=a) then its coordinate is x!

1

such that a = -é-(x' -X; ). Solving gives x' = 2b - 28 4%, .

The reflection of P, in b (the iine with eciuation x=b)

is Pa. Its coordinate x" is such that b = %-(x' - X"
or 2b = 28 + x, -x"., Solving gives x" = 2a - 2b + x,4.
Consider the distance PPy, PPy = {28 - 2b + X, - X |

= 2|v-al or %—PP:, = |b-a|. There is a fixed line where
the equation is x=a - b + x, and P's distance to this
line is |b-al, whilé Py 's distance to it is also [b-af.
Thus this line is the perpendicular bisector of PP,.

We conclude that composition of the three line reflections
is a line reflection.

Teke & to be the y-axis and b the x-axis of a rectangular

coordinate system and then ¢ has equation x=a,

'ap
Plogs | BEY
al X jeb
R, O Ry Ry
X' =c=¢ +Xx Pa(."‘"ﬂ .P; (X‘,‘y)
Py X' = 2¢ + X

Ps is the image of a point P, under Rb
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This point must be P, (2¢c + x, ¥)

SRV E NS S PR R

P, is the image of a translation whose direction is
|| to x-axis and distance = 2c, i
(a) We must show that the slope of £ is the same as

the slope of the line of direction. The slope of £ is !

n——T and the direction line's equation has a slope

of b
la+I)c

(v) We can represent any point of £ as heving coordinates
((a+1)d,bd) where d can take on all values, since these
coordinates satisfy the equation of ¥, If we apply the

coordinate rule on these coordinates

(%, ¥) >(ex+by+(a+l)c, bx-ay+be).
Considering first the effect on (a+l)d, then on bd we

get (a+l)d— >a(a+1)d+b(bd)+(a+l)c = a®d+ad+b2d+ac+c
= d(a?+b? )+ad+ac+c = d+ad+ac+tc
bd >b(a+1)d-a bd+bec = bd+be.

If the "image" values satisfy the equation of the line

% the proof is complete. Use the equivalent equation

(a+1)y = bx. Then (a+1)(bd+bc) should be equal to

b(d+ad+ac+c), and they are,

The rule should assign a point of £ to a point of 2

because under a reflection in a line the line itself

is fixed end only the translation "moves" that point.

(c) (x, y)——=—>(x+(at+l)c, y+be)
(x, y)————ﬁ——>(ax+by, bx-by) See section 9.8 problem 16.
(x, y)—!LE—E£>(ax+by+(a+1)c, bx-by+be )

21

e
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If X is the midpoint of TPB, then‘X—C’ P (ﬁ: i #F and
§§?|| 1;:5: |} C because . if & line joins the midpoint
of 2 sides of a triangle it is || to the third side.
Thus ABCX is a parallelogram. But there is only one
point that can serve as X, Therefore for 2ll P there
is one point that is the midpoint of TFs.

This shows that the composition of H,, HB’ HC which
maps P onto P, is the same as the HD which also maps
P onto P». Hence the composition of three half-turns
is 8 half-turn.

This conclusion is not invalidated if A, B and C
are collinear,.

This 1s proved if we can show

that F is the midpoint of

P g
PP3. This can be done by \\\\ J/////\\\\\\
showing that PP Ps P, is a A F 8
Parallelogrém for then F is ‘\\\///// ‘\\\\\

the midpoint of PPs. A P P,

coordinate proof follows on
taking ﬁ’as the x-8xis of
a rectangular coordinate system with F 2s origin. Then
A and B may be assigned coordinates (-2, 0) and (e, 0).
P(x, vy) :

Py (=X, -y) and finally P, (-x, -y)

q 1
—A 5 p (-28-x, -y)—i—>(2atx, y)—DP—>

B
—I > px, y).

£1q
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9.11 The Three Line Reflection Theorem (2-3 days)

We have not shown a figure for the first theorem of
this section. We hope that students will uinderstand it with-
out a figure. This they can do if they see, for instance,
that from A'X' = A'X" we conclude that A' is equidistant from
X' and X", To see a geometric proof by noting the symbols
used to represent geometric entities is a veluable experience
in that it brings home the ldea that our system is an sbstract
one, and that the figure 1s & model.

Before teaching the second theorem encourage students
to examine Figure 9.1lle, in particular to trace fhe paths
from A to A’; from B to B, to B's; and from C to C; to Cy to
C'. These are indicated by arrows along dotted lines. As
they trace these paths ask them to tell the distances that
are preserved in thelr "motion". 1If they can do this they
may be able to follow the proof without looking at the figure.

0.12, This exercise should be done in class by tracing a card-
board triangle in two positions and finding 3 lines of re-
flection that will mep one on the other. Often this can be
achleved in more than one way. Students can repeat this

with two congruent triangles piaced oh a ditto, Speciasl cases

requiring one or two reflections in a line may be examined.

200
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9.13 Directed Isometries (1-2 days)

We have not said much about orientation along a line
or along parallel lines. This concept can be made precise
in terms of parallel rays or anti-parallel rays. The former
are two rays on two parallel lines that are in the same
half-plane of the line containing their vertices, or two
rays on a line whose intersection is a ray. Two snti-parallel
rays are rays in parallel lines that are in opposite half-
planes of the line containing their vertices, or two rays
on & line where intersection is not a ray. Two rays have
the same sense if they sre parallel; they have opposite senses
if they are anti-parallel.

The stove concepts can he presented informally, if you
wish.

It is easier to present informally the concept of
orientation of a plane., Though the concept is simple, when
presented informally, its application can be quite profound.
Note for instance, the simple proofs that can he given in

Exercises » and 7 of Section 9.14.

9.14 Exercise Sojutiong

Note to teecher: All exercises should be done and completed
in order. One builds on another. Exercise 10 should be
starred, or else students should be given hints for the
proof.

1. A line reflection reverses the sense of three noncollinear

£
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points. A second line reflection restores the sense.
A third reverses the sense, Hence the composifion of
three 1line reflections is an opposite isometry.

2. A pair of line reflections is a direct isometry. An
even number of line reflecticns is a composition of
pairs. The composition of direct isometries is direct
since no reversal of sense teokes place for each pair.
An odd number of compositions of line reflections may
be regarded as the composition of an even number of
reflections and one extra reflection (2n+1 = (2n)+1). The
composition of the even number of reflections. is direct,
while the last reflection reverses sense. Hence the
composition of odd number of line reflections is an
opposite isometry.

3. A glide-reflection is the composition of a translation
and a reflection in & line. The first preserves sense;
the second reverses it. The composition therefore re-
verses sense and is en opposite isometry.

4, a., A translation preserves sense. The composition

of any number of translations continues to preserve
sense. Hence the composition of any number of
translations is a diréct isometry.

b. The same argument applies to rotations as to trans-
lations, since rotations are difect isometries.
The composition of any number of Rotations is a

direct isometry.

o 290
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c. The same argument applies to half-turns as to rota-
tions, so the composition of any number of half-
turns is a direct isometry.

a., Any permutation of (reverse, reverse, preserve)
results in "preserve." Hence the composition of
the 3, in any order, is a direct isometry.

b. A half-turn preserves sense. To produce an opposite
isometry, the half-turn should be composed with an
opposite igometry. The compositions of an even
number of line reflections is a direct isometry
while the composition of an odd number is an opposite
isometry. Hence we should use an odd number of 1line
reflections to produce an opposite isometry,

Since a half-turn is 8 direct isometry and the compo-

sition of any number of half-turns continues to be

direct, and since a line reflection is an opposite
isometry, it follows that the composition of any number
of half-turns cannot be a line reflection. -

The same argument applies to rotations as the one in

Exercise 5 for half-turns. The fact that a rotetion

may be the identity transformation does not invalidate

the conclusion. |

a. Since a glide reflection is an opposite isometry,
we need another opposite isometry with which the
glide reflection should be composed to produce a

~direct isometry. This can be a line reflection

n0q
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or another glide-reflection.

b. To produce an opposite isometry we need to compose
the glide-reflection with & direct isometry, and
this can be & rotation (including & half-turn),

or a translation.

a. The identity mapping preserves sense; hence it is
a direct isometry.
b. If an isometry is direct, its inverse must continue
to preserve sense;that is, its inverse must also
be direct, for the composition to be direct. (The
composition must be direct, since the identity
mapping is direct).
If an isometry is opposite its inverse must reverse
the reversal of cense to restore the sense, so that
the composition is the identity, which is direct.
Hence its inverse must also be opposite.
Let the two fixed points be A and B, and let C be a
third point not in Xft Let the image of C be C' under
the isometry. If C and C' are on opposite sides of€K§>
then the sense in (A, B, C) is reversed in (A', B', C').
This denies the hypothesis that the isometry is direct.

Therefore C and C' are on the —C (b,<)
same side oi‘m Because the C'(J,é
iscretry preserves distance c
AC = AC', BC = BC' we can
show thet C = C' by taking

A’ (a,0)

08
LI
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>

AP as the x-axis of a rectangular coordinate system,

with B as origin. Let A have coordinates (a, 0), C(b, c),
¢'(d, e). Then using (AC)?

(AC')? we get (a-b)2+c? =

E (a-d)® + e?, and from (BC)® = (BC')?, b2+c? = a2 +e?,

d® and therefore b = d. Hence

f These imply b?
¢ = e Dle| = |el.
| These imply b = d. Since C end C' are on the seme side

of the axisﬁwe can then show ¢ = e, Hence C = C'.
| By the lemma of Section 9.11 an isometry is uniquely
determined by its effect on three noncollinear points.
Since the identity transformation leaves three noncollinesr

[ points fixed, the isometry is the identity.

sf 9.15 Groups of Isometries (2 days)

We have not considered the group of gll rotations in a
plane, restricting our attention to rotations sbout one point.
We omitted a consideration of the larger group to eavoid the
difficulty of showing that the composition of two rotations
r, (A , 8,) and ra(A; , %) is r(Q, 6, + 8,), where Q is a
point in the plane. (See Jeger, page 56). 1If you wish to
develop the larger‘group, see Problem 3 in the Suggested Test
Items of this chapter.

You will find an example of a finite group of isometries,
the group that leaves a figure invariant, in Exercise 9 of

Section 9.16.

= h
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9.16 Exercise Solutions

Note to teacher: Problem 9 is important; it will be used
in the following set of exercises. Also, add to Exercise
1, part b, "Using your results in part a, show that the

set of translations (in a plane) is a group.
1. a. (i) T(A A) is the identity transformation;
14
~ LA 0 =
(ii) T(B: A) is the inverse of T(A, B), T(B, C) T(A, B)

= T(a, ¢)

(111) Tg, ¢y © T(a, 8) = T(a, ¢).

b. The answer in a demonstrates that the identity trans-
formation may be regarded as a translation; and every
translation has an inverse that is also a trans-
lation, The associative property has been demon-
strated fof all isometriczs and therefore belongs
to any subset of the set of isometries. We conclude
that the set of translations (in a plane) is a group.

2. The set of direct isometries consist of all translations
and half-turns. (1) Since the composition of direct
isometries is a direct isometry, thc set is closed.

Since the direct isometry is unique, the set of direct

isometries is an operational system. (2' The identity

transformation is a special case of a transformation

or the composition of a half-turn with itself. (3)

We have seen in Exercise 1 that every translation has

Nl
o
M J?
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an inverse in the set. 1If H is a half-turn the HoH = 1.

Therefore H is its own inverse. (4) We have established

that the assoclative property belongs to the set.

Therefore the set of direct isometries is a2 group.

No; th2 set of opposite isometries is not a group because

the composition of two such iscmetries is direct and

hence not in the set (the set is not closed). 1In fact

this shows that the set of opposite isometries 1s not

an operational system.

No; the composition of two half-turns is a translation,

which is not in the set of haif-turns. Therefore this

set is nct even an operational system. Also, there is

no identity, yet it conteins its own inverses.

Yes. See Exercise 2 above; and by the definition of a

sub-giroup.

Let P be the point about which the rotations take place

and let a > 0. (a represents the number of degrees of

rotation. It may be any number. It is not to be confused

with the measure of an angle, which is a positive number

less than 180).

(1) Since r{?, b) o r(P, a) = r(P, a+b) is a rotation,

we have here an operational system.

(2) Furthermore r(P, 0) = i (identity requirement)

(3) For each r(p, a), r(P, a) © (P, -a) = r(P, 0)
(inverse regquirement)

(4) The associative property requirement is satisfied

O
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because composition of mappings. is associative in
general. Hence the set of rotations with the same

center form a sub-group.
7. Since f and g are isometries, each has an inverse, f'l

and g'l. Since the set of isometries is a group we can

1 1 1

start the proof with fogog ~o £

=fo(go g—l) o f”
1 a

—fotofrt-ofrofrt=i
operating on the left with (f o g) we get

(£ o g)"o(t 0 g)o(g ™0 £71) = (fog)toi

1o (gl ) = (fog)t
and finally g'lo £L (f o g)'l
8. (f;ofaofa...ofn)-% :f‘n'1 o) fn-l-l ...f,'l ofa'l.
0. (a) A—Te2_g I—T 2 TR
B—1TL2 _>p B6—X2 7B
c—T2—>B CE—X2 5B
In short, AABC—-—2 ——>ACAB
(b) A—Dr sp IB-—N TR
B2’ —>C 50— BC
c—2 58 A— 58
In short, & ABC—BL__SAACB
() a—Fa 0 A5—Fe >80
p—e 5B L T
TR sp TA—Re 37K

Tn short, AABC— T2 SACBA




P

(@) A—2 53 B2 5 1B
B R3 > A B—2e 5 OR
c—B 5 ¢ m—F 5 B¢

In short, AABC——2 — SiBAC

(e)

i 7 r, Ry R, Ra

ili n Ta Ry R, Ra
| n s i Rs Ra Ry
ra | r, i r Ra Ry Ra
R | Ry Ra R i Ty o)
Ra | Ra Ry Ra ry i T,
Rs | Bs  Re Ry r, n i

) (3, o) is a group because it is an operational
system, is associative; has i as identity element
in S; each row and column has an 1 entry- hence
each element has an inverse in S.

(g) Subgroups, in eddition to (S, o) ere
(liasm,ralio)s ((115R1)s0)s ({11sRe)s0)s

(flasReds0)s _({2)50).

9.17 Isometry, Congruence, and Symmetrv (4 days)

In this section we use the concept of an isometry to
shed 1light on the nature of a congruence and a symmetry.
A congruence is a relation between two figures. A symmetry
is a uroperty of a figure. it is & triumph of the concept

of isometry that it is sble to define both 2 congruence and

ERIC 29
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a symmetry with simplicity when these concepts are otherwise
quite difficult to define.

You should note that we do not develop any theorems such
as the SAS, ASA and SSS principles for triangles. Ve are
concerned here only with the definition of e congruence between
figures, &nd this definition serves as the working program

+o prove any kind of figures congruent.

9.18 Exercige Sqlutions
Note to teacher: Exercise 7 is important.

1. Using B es the center of & helf-turn,

A—>C B——>B, end D —> E
Therefore AABD ————> ACBE and AABD % ACBE.
0

C
A]E

2. Using the reflection in CD,

a. A—-——>B,C—'—-“>C,D >D-

Hence AhC > ABCD, and AACD = ABCD.

b. LCAD — LCBD Therefore mLCAD mL CBD

since isometries preserve gangle measures.

c. AC > BC, AC = BC. Isometries preserve distance.
d. A —>B, C ——>C

M ——>M. .. AACM ——> ABCM and AACM = ABCM.

Since L CAB ———> LCBA, mZCAB = m/.CBA.

290
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e, The reflection in Ef?maps ADBC onto BDAC. Hence
>
ADBC is symmetric, with line of symmetry CD.
No, the proof would be the same since fﬁ?vﬁll still be

(&

the perpendicular bisector of AB and reflection in o
will map AACD ——> ABCD and hence 8ACD 2 ABCD.

4, Any two cirecles having radii of same length sre congruent.
One way to show this is to use the midpoiht ot the seg-
ment Jjoining their centers ss the center of a half-turn.
This he2lf-turn maps one circle onto the other. Other
isometries are (&) The translation that maps one center
onto the other, (b) the line reflection in the per-
pendicular bisector of the segment joining the centers
of the circles,

A drawing showing any one of these isometries is
satisfactory.

5. a. Under the line reflection in the perpendicular

bisector of ABy A ——> B, B ——> A and D > C.

Hence AABD ——> ABAC and AABD = ABAC.

et e e e e e e e et ot et en e o oot e D Xe«-w s e o e e e e
f A B

‘ B
b. ABCD is symmetric under (1) The line reflections

in the perpendicular bisector of BB, or DC (2)
The perpendicular bisector of DX or BC (3) The
helf-turn in the intersection of AC end:F®D.

6. The first congruence uses the rotation r, (0, 120). The
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The second use r, (0, 240) or r, (0, -120). Assume the
discussion in Section 9.1%4 Ex. 9 that shows that r,and
r, leave the triengle invariant.

Recall that by the rotation r, (0, 120)
AL 5B B-D 50 o830

Ty

Hence AAOB - > ABOC and .. AAOB %= ABOC

Similarly, by r, (0, 240),
A—Tasc, B2 54, 00

Hence AAOB —-—2.—> SCOA and .. AAOB ¥ ACOA.

a. The identity transformation is an isometry. Therefore
any figure is congruent to itself.

b. Let I be the isometry that maps F onto F'. Then

the inverce of I exists and is an isometry. (The set of

isomatries is 8 group) it maps F' onto F, Hence F'=F.

c. Let I, and I, be the isometries that mep F; onto

F, end F, onto Fa, respectively. The composition

I. © I, maps F, onto F3, Hence F, = F,.

Since the congruence relation is reflexive,

relation.

a. PFive: 2 rotations, 2 line reflections (see Exercise
9; Section 9.16). *

b. One: line reflection (the linegis the perpendicular

biskctor of the base), |

¢c. Infinite: a rotation of any amount about the center,
8 lipe reflection in any diameter.
K
| 290
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9,19 Other Transformations. Dilations and Similarities.
(3 days)

We use the term "dilation" in the same sense as Jeger
uses "enlargement" and others use "homothety". As we use the
term, a "similarity" is the composition of a dilation and an
isometry. There is an unhappy variation in the literature
in the use of the terms., If students are asked to do any
reading, aside from the text book, they should be apprised

of this variation.
9,20 Exercise Solutions

1.

There are other possible drawings.

G0
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2. The rules of assignment for a dilation about a center
0 with scale factor -1, and for a half-turn about the
same center produce exactly the same image for each
point. Hence such a dilation and half-turn are the

same.

B'(cr,dv)

O (0,0)

Making such a drawing a measurement of AB and ATB'
should be sufficient to satisfy the demands of the
Exercise. If a general proof 1s required we can use
a rectangular coordinate system which has the center
of the dilation as origin, that assigns coordinates
(a, b) tr A and (c, d) to B, If the scale factor of
the dilatich is r then A' has coordinatés (&ar, br)
and B' has coordihates (cr, dr). The calculations

for distances AB and A'B' should prove A'B' = r(AB).

AB =~"{a=¢)® ¥ (b=d)%
A'B' =+ (ar-cr)® + (br-dr)”

=T a-C)° + (b~

= 1r AB,




Let the collinear points be A, B, C with B between

A and C. Then AB + BC = AB.

Let r be the scale factor for the dilation and A',

B', C' the images of A, B, C. Then, by Exercise 3 above
A'B' = rAB, B'C' = rBC, A'C' = rAC.

AB+BC = AC implies r{AB) + r(BC) = r(AC) or A'B'+B'C' = A'C'.

Therefore B' 1is between A' and C'. This proves not

only that A', B', C' are collinear, but also that *he

betweeness relation is preserved by a homothety, that

dilations preserve lines, rays, segments,

If dilation h, of O has scale factor r; and dilation

hy, of O has scale factor r, then h, o h; is a dilation

of O with scale factor r;ry. Thus the system is an

operational system. (Associativity) Composition of

dilations is associative since dilations are tran:form-

ations. (Identity) The dilation of O with scale factor

1 assigns each point to itself. Hence it is the identity

transformation. (Inverse) The composition of hy of O

with scale factor a with h, of O with scale factor %

is a dilation of O with scale factor 1. Since a # 0

every dilation of O has an inverse which is a dilation

of 0.

This completes the proof.

i
e
i



8. A similarity is direct if it preserves the sense of

E three noncollinear points. It is opposite if it reserves
the sense of three noncollinear points.

9. Since a similarity is the composition of a dilation am
an isometry it is sufficient to know that dilations |
preserve angle measures to conclude that similarities
preserve them also. One can prove that dilations
preserve angle measures by first pr wving that the image
of a line under a dilation is parallel to the line.
This leads to the conclusion that the image of an angle
under & homothety has the same measure as that or the

original.

| 2on
ERIC o




9.22 Summary Exercise Solutions (2 days)
1. A A
B C
A
c----}—-——r—
v
- |
B ¢!
|
|
I.A!

2. a. Under the half-turn about the midpoint of AT

A ——>C, C >A, B >D, D ——>B, Therefore
>DR, Ch —>AB and DA —%C,
> CDAB and ABCD = CDAB.

AB ——>7TD, BC

or ABCD

b. No, because B is not mapped onto A, nor any other
vertex of ABCD.
c. No, unless ABCD is a rectangle.
3. a. Each vertex is amppedoonto an adjacent vertex
because AT | BD and AT and ED bisect each other.
A._EL_>B
B—L1 3¢
C_Jl_g D
D L1 >4

In short ABCD—23-> BCDA, so ABCD % BCDA.

b. ABCD —2—) CDAB so ABCD = CDAB
c. ABCD —X2-) DABC so ABCD % DABC

ary




d. The axis is the perpendicular bisector of AB and CD.
Therefore, under the reflection, A ——> B, B —> A,
C —> D, D——>C and ABCD——> BACD so ABCD % BADC.

e, Since AT is th2 perpendicular bisector o BD

>Dy ¢ ~——>C, D —>B, a d

A >A, B

ABCD >ADCR so ABCD 2 ADCB.

= v

f. (1) identity =i (2) A reflection in the line
through the midpoincs ¢ BC and DK (R, )
(3) A reflection is BD (R,).

g. i ry r, ra R, R, Rq R,
111 ry T, rge Ry Rs Ra R,
nin ra | i Ra R, R Ra
Ta | Ta Ty i r, Ra Ry Re Ra
ry | 1a i Ty T3 Ra Re Ra Ry
Ri | Ra Ra Rz Ry i rz r ra
R, |Ry, Ry R Re o i Ty Ty
Ra | Ra R, R, Ry Ta ' i T
Re |Re R R, R, Ly ra T i

ho {i’ ri’ ra’ ra]'
i. {1, R;]: (i, Raj: {1, Ra]: {i: Rq,]: {1, ra}o
i, Let P be any point not in AB. p
a
H o
Then ) A > P, D
H

-\
P\///\ \
B /
Pp———> P, \/\Z\)
Thus P > P, A f

\///6
a

‘30@
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Now to find the image of P under HC o H..

L
H
p—2 > p,
Hg
If Py——————> P, then the statement is proved.
HgH, &> >
From P > P, it follows PP, = 2AB and PP, || AB

<«
But AB = DC and AB || DC. Therefore PP, = 2DC and
PP, |l DC. 1In APP,P;, therefore DC intersgects

in its midpoint, call it X. Thus DX = PP, = DC.

ST

Therefore C = X, or C is the midpoint of P,Fs and
-

Pa———> P,. If P is in AB, essentially the same

proof applies, for 2DC is still equal to PP, while

€~ < .
P, P, || AB because the lines are the same.

(x,4) A, (-x
Using a rectangular _ ?\ii\\gl/,/”/ 5t ;?)

coordinate system with a as

x-axis and P as origin, let A AJ”Fﬂ) Alf-x,-j)
have coordinates (x, y),
Ra HP -
A(x, y) _—_P-I-—> Ay (x, -Y)——'R—'—Qﬁa(-x: y),
Ax, y) —E——> A(-%, -y)——2—DAs(-x, ¥).
- HPRa = RaHP'

The composition of four line reflections is a direct
isometry. A glide reflection is an opposite isometry.
A direct isometry cannot equal an opposite isometry.
Under allltranslations and all half-turns.

(a) identity transformation

(b) 1ire reflection

(¢) translations

(d) rotations.
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(a) The direct isometries are rotations (including
half-turns) and translations. The opposite iso-
metries 2re line reflections and glide reflections,

(b) No; a half-turn is an involution, but not an
opposite isometry. It may be an opposite isometry,
for example, reflection is a liine,

Let PQ be the x-axis and b the y-axis. Then (a, O) may

be assigned to Q,(-a, 0) to P

and (x, y) to any point A,

ARy 7} 23 (5, ) B (2et, )

A(x, ¥)——2—h,(22-x, -y)—jb——>As(-2a+x, -y)

S HPRb = RbHQ.

Construct the y-axis through A e

If P(x, y) then P—RL_>p, . e
(%, ¥) LD (~x,7) & L;‘

Slope AP = L ana Slope AP, =L = - & /

Hence the reflection of AP in the y-axis has a slope
which is opposite (add. inv.) to its slope.
Furthermore, since a half-turn does not alter the
slope of a line
Rm o HB o] Rz o] HA does not alter the slope of AP.
[slope AP, = - slope AP and slope BF, = -slope P,B]
Hence AP || BPR,.

Two figures are congruent 1f an isometry maps one onto the

other.



13.

a) b) D c
[
///“\\\\\\\\\\ A 8
X
A & \\\ ' A
€ ->

Ar\\\»/’/////i’ﬁﬂ' | ! =, N

el
¢’ p'

A figure has symmetry if it is invariant under an

isometry.

a. An isosceles triangle. (There are many possible
answers).

b. A rectangle. (Other answers are possible),

C. A square. (cirele, any regular polygon).

Suggested Test Items

Make a drawing that shows the image of a given AABC under

a. e line reflection in a line through C, not crntaining
interior points of AABC.

b. & half-turn in the midpoint of ZE.

c. a rotation about A through AA, fromﬁ to Ié’

d. the translation that maps A onto the midpoint of AC.

Describe an isometry that, in general has

a. no fixed points

b. has exactly one fixed point



c. has one fixed point and fixes all lines through
that point.
d. fixes all points in one line and in lines perpend-
lcular to that line.
3. Let the diagonal of parallelogram ABCD intersect in E.
If F is in AB end FE intersects CD in G, show that
CG = FA and m{CGE = m/AFE.
4, Show, that a glide reflection can be regarded as the
composition of two half-turns and a line reflection.
5. Let ABCD be a rectangle. Under what isometries 1is the
rectangle invariant? (there are four), Show that the
set of these isometries with composition as operation is a
group by displaying & group table.
6. Let lines a and b intersecting in O serve as axes for
line reflections Ra and Rb'
Show RaRb in general does not equal RbRa'
7. The center of a circle is P. A line through P intersects
the circle in points A and B. A second line through P
intersects the circle in points C and DD. Prove

AAPC 2 ABPD and mLPCA = m/PDB.

8. (An optional problem).
Let r, be a motion about point A e
and r, a rotation about point B. ‘\\\77\\‘\\\\
Assuming that r, can be decomposed /A( 4\72“>>

o A

into two line reflections whose axes

are AC and AB in that order and r, can be decomposed into

Q 2%
ERIC ;316




two line reflections whose axes are AB and BC, in that order,

prove r, O r, is a rotation about C.

Answers for Suggested Test Items

a) A 8 b) < %
c
\
b‘ C
A' B
g
-
c) c! a) 8 _-— \\
B'
N
"N /// c
] A c
B A<A

a. A translation or a glide reflection
b. A rotation

c. A half-turn

d. Line reflectioci

>F,

Under the half-turn sbout E A- >0, B———>D, F

Since (A,F,B) are collinear, so are (C, F',D). But

both F' and G are in EF and DC., Therefore F' = Q.

Since a half-turn 1s an isometry, CG = FA and m/CGE= m/AFE.
A glide reflection can be regarded as the composition of

a translation and a line reflection, But a translation
can be regarded as the composition of two half-turns

in distinct center. (See Exercise 11, Section 9,8).

RED



- 339 -

The group table is

i Ra Rb HE
i i Ra Rb HE
Ra Ra t HE Rb
R'b R‘t) "E i Ra.
HE HE Rb Ra i

This may be done by making a drawing that shows the
image of a point under R&Rb 1s not the same as the image
of the same point under RbRa. But this does not merit
full credlt.

A general proof can be based on the Theorem that
the composition of the two line reflections is a rotation
from the first axis to the second. Reversir.; the order
of axes reverses the orlentation of the rotation and
hence produces, in general, different images.
Using the half-turn in P, and knowing that the radii of
a circle have the same lingth, A —>B, P —>P, C —>D.
Therefore AAPC —>ABPD and APC # ABPD. Since APCA —
APDB, m/PCA = m/PDB (isometries preserve angle measure).

= R__0R,n.

Ty = Ry © Rpps T2 = Ry, © Ryp

Therefore r, 0 ry = Rgn O Ryp O R

\B o R

AC

But RAB o} RAB= i, and RBc 01 = RBC’

Therefore r, 0 r; = Rp, O R;,. Since BC and AC intersect

inC r, © r, is a rotation about C.

QAR
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Chapter 10
Length, Area, Volume

Time Estimate for Chapter: 11 days

We consider measure to be a function. There is no
difficulty in defining the domaln of this function for the
measurement of segments, nor is there any uoubt that the
range is the set of non-negative real numbers. Thls clarity
is essentially due to the case of subdividing a given segment
into segments, all of which are simllar to 1t. However the
situation 1s less clear in measuring regions. This is partly
due to the fact that a reglon cannct always be subdivided
into reglons that are congruent to a unit reglion, nor even
similar to 1t. For this reason we prefer to discuss first
the simple case of the areas of rectangular regions, and only
after some bhasic notions have been discussed do we consider the
area of other regions in Section 10.13, and of circular regions
in Section 10.16. The case for volumes of solids is still less
clear and we restrict ourselves to the volume of rectangular
solids (Sections 10.7).

In constructing a measure function we start with a
domain of the set of figures we are to measure. This can be a
set of easily measurable figures, such as rectangles or polygons
or rectangular solids. These domains can be extended later.
Then we postulate that we can assign a non-negative real number
to each figure such that the samz number is assigned to any two

congruent figures (sometimes called the property of invariance),

shls
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.nd to every figure that is subdivided there is assigned a
number that is the sum of the numbers assignemd to the sub-
divisions (the additive property), and finally, the number
assigned to any figure is determined when a measure 1s assigned
to one figure in the set. It should be noted that different
weasures may have different sets of real numbers as their ranges

or co-domain. For example, the range of angle measure is

74N

{":0€R and 0 = » ¢ 180)}; the range for probanility measure is
{p:pfR and O < P < 1}; the range for measures of segments,
areas, and volumes is (7:M€R and m 2O]. We have also mentioned
the possibility that a measure does not exist, but it is not
important at this level of study.

In Section 10.9 and 10.11 we extend the domain of the
area function from the set of rectangular regions to the set of
triangular and quadrilateral regions. We hint, but do not develop,
the possibility of extending it still further to include polygonal
regions, that is, regions that can be subdivided into triangular
regions. The interesting feature of this extension is that it is
accomplished by deductions, The theorems 1r these sections give
formulas for finding sreas. You should not expect proofs to be
rigorous.

Overhead projection can be used effectively to show the
approximation process in operation. For instance, in Section 10.4,
where segments are being measured, a set of overlays, each with
smaller subdivisions, would show nicely a set of lower and upper
approximations. The same is true in Secfion 10.5 where rectangular

{egions are measured, and in Section 10.13 where the area of a
LS

REIN
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map is measured.

References: Kutuzov, RBR.V. Studles in Mathematics.
Geometry School Matnematics Study Group,
Vol. IV, 1960.

Levi, Howard. Foundatlons of Geometry and
Trigonometry. Englewood Cliffs: Prentice-
Hai%, 1960.

The number of teaching days for this unit may vary
depending on the background of the student. The total tsaching

time alloted should not exceed 12 days.

10,1, 10.2 Introduction and measure on 3ets
{Time estimate including 10.3 = 1 day)

These two sections serve as a generzl introduction to the
measurement of line segments, planar reglons and solids. Section
10.2 develops the general idea of the counting measure of a finite
set and thc property of additivity of measures. These are general
principles and 1ill be used again in a more complete development

of the counting principle.

16.3 Answers

n(A) = 16
n(B) =
n(C) =
n(D) = &4

347
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2, n(ANB) =n({x:x € X and x is a multiple of 3 and x is a
multiple of 5})
= n({x:x € x and x is a multiple of 15}) = 3.

n(A N ¢)= n(e) =8,
n(A 1 D) =1,
n(B Nc) =1,
n(B 0 D) = n(#)
n(c n D) = n(g)

3. n(Ay B} =n(A) +n(B) ~n(ANB)=16+9-23=22

n(A +; €) = n(A) = 16.

n(A 1y D) = 19,

n(B y C) = 19,

n(B y D) = 13.

n(C y D) =12,

0.
0.

L, n(axB) = n(A)+ n(B) = 16-9 = 144, n(BxC) = 72,
n(AxC) = 128, n(BxD) = 36.
= 32,

n(AxD) = 64, n(CxD)
5. n(AxBxD) = 16°9°4 = 576, '

n(ANBnNnd) =n({x:x € X and x 1s a multiple of 3 and x is
a multiple of 5 and x is a multiple of 11})
= n(g) = o,
n(Ay By D) =n(Ay B) +n(D) =n[(Ay B) nD]

22 + 4 - nf(AnD)y (B ND))
22 + 4 ~ [n(AND) +n(BND) -n(ANnBnD)I]

22+ 4 -[1+0-0]=26-1= 25,

ERIC - 348



- 3uy -

10.4 Lengths of Line Segments (Time estimate = 1/2 - 1 day)

It will be recslled that Chapter 5 contained & rather
complete discussion of the measuring p:iocess ¢of line segments.
Therefore, it 1s only necessary to review quickly this procedure

and the various principles of this section.

10.5 Areas of Rectangular Regions (Time estimate including 10.6
= 1 day)

This section develops the general technique for finding
the measure of & rectangular region, Although students may be
familiar with the formulas A = g¢w and P = 2g + 2w, they should

understand the process leading to them,

10.6 Answers

l, a. 21 sq. in, b. 21 sq. in. c. 21 sg, in.
d, 13,12 sq. in, e. V6 sq. in, f. 30 sq. in.
g. 8 sq, in. h. 3.3 sq. in, i, 2 sq. in.
- _ a2
2, A square is a rectangle. Therefore quuare = 5,8 = 5

or K= gw, K= ¢g°s, K= §*

3. a. KADEH = 15.6 or 90 b, Kyoyy = 10°2 = 20
co K ppay = 56 = 30 d. Kgorg = 5.4 = 20

e, K= 104 = 40

349
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4, a, Two rectangular regions have the same area 1if they
are congruent,
b, The area cf a rectangular region is equal to the sum
of the areas of its subdivisions.

_2

K

2ory T KD (The additive principle)

d. Kypgy =

% Koy = Keper + Kaory (addition property of =)

5. a, KRI=a,a b.KRﬁ=a.b c. Ko =ab d.KR=b’3

s 4
e. The area of the entire square region is (a+h)®. But by

algebraic principles (a+h)® = a® + 2ah + h?®, and this is
+ + + .
R, * TRy T RyT R,

(a+h)® = a® + ah + ah + h® = a® + 2ah + 1W?
6. a. An adjacent side is V52-=4° inches long or 3 inches.
‘ K= 43 =12 sq. in.
b. An adjacent side is VII-Z25 or 4 in. long. K = 4'5 =

20 sq. in.

; c. Vi¥F - 12 =5, & K =512 = 60 sq. in.

x d, VIO® - 6% =8 " & K=8,6 =48 sq. in.

‘ e, VII-5 =V6 s K =VvsVE = V30 sq. in.
1 f. V& - 15 =20 s K = 20-15 = 300 sq. in.

nRe

é 7. a., Since ABCD is a rectangle, AACD 2 ACAB (AACD~ACAB by
a half turn about the midpoint of AC)

KACD = KCAB’ by the congruence principle for areas.

b. By the additive principle KABCD = KACD + KCAB = 2KACD

oo K = l K o
ACD = Z ® pBep, =N

g P
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8. Under the half-turn about the midpoint of PR APRS -~ ARPQ.

Hence A PRS = ARPC and, by the congruence principle, KPRS =

KhPQ‘ By the additive principle K?QRS = K?RS + KﬁPQ = QK?RS.
9. Xprq = Kgyge
10. The statement is false as indicated by the following counter
example: The rectangular region with dimensions 6 by 2 has
the same area as the rectangular region with dimensions
L4 by 3, but they are congruent,
11, (Drawing figures at the board would be helpful to the students)
a. Each side of a square foot is 12 inches long. Its area is
therefore 12°12 square inches.
b. Each side of a square yard is 3 feet long. Its area 1is
3°3 sq. ft.
c. Each side of a square centimeter is 10 millimeters long.
Its area is 10°10 square millimeters.

12, The area of the larger is 4 times the area of the smaller,

KA.BCD = W K?Q,RS = (25)(2‘”)
= (2 2)(g4w) Associativity
= Ugw
* Kpopg 18 L times the area of Ky 5oD
13. a. K K = g,°wyi,2w, = 1:2
b, K: K = g, W 23w = 1:6,
c. Kt K = gq°W ¢ %-g,-EWI = 1:1
d. K: K = g,w, %ﬁ,;: bw, =3:4
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14, a. Let s = length of side of square., By the Pythagorean
property of right triangles s® + s = 12 or 2s® = 1h4
o s® =K =172 sq. in.
L,2 s? 64 sq., ft.
36.2 §? 36 sq. ft.
d® or s? = K = édz.

c., s® + s? = (6/2)%, 28°

Let s = length of a side., Then s?+s®

]
1
)|
il

K

!
[t
]

}-J
i

10.7 Volumes of Rectangular Solids (Time estimate = independent
or 1 day)

Since the methodé for finding the volume of a rectangular

golid is ‘analogous to that used in Section 10.5, students should
experience little difficulty with this section., The teacher may
want to assign this section for homework to leave extra time in

class for going over the exereises,

%O.g) Exercises (Time estimete = 1 day for exercises 10.6 and
1. a. V=342 =2l cu, ft. b, V=2 .45 =50 cu. ft,

C. v = J_2’\/—3.2 = EJ-6 cuo fta da 2 = 3.1 * 203. u' = 28.52 cu. ft‘
2, The volume of the first box is 2 - %.~ 1l =3 cu, ft.

The volume of the second box is l% . 1% e 1 = 3%6 cu, ft.

& The second box is larger by %6 cu, ft.
3. Volume,.
4, a. 1length

b, area

¢. vVvolume

5. Each edge of the cubic is e, & V =-e-.ee = ea.

ERIC B
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6. a. Each edge of a cubic foot is 12 inches long. Therefore
3
its volume is 12 = 1728 cu. in.
b. Each edge of a cubic yard is 3 feet long. The volume

of a cubic yard is 3’

¢. The number of cubic decimeters in a cublc meter is lOa
1000,

d. There are 1760 yards in one mile, Therefore there are
1.760a cubic yards in a cubic mile. To approximate 1760°

Y s
we can take 1700+1700:1800 or 289-18°10 or 300°18°10
a 3 8
which is 54°10 .. 1760 1is abouts54.10 ,
7. (a) V=3.2.5 =30 (v) .v=4-3-5=60

10.9 Area of Triangular Regions (Time estimate including 10.10
= 1 day)

Students should be challenged to find the formula for
the area of a triangular region. After the informal discussion,

the derivation of Formula 2 can be done in more detail.

10.10 Exercises (Drawings will be helpful in many of these

exercises)
1. a. K= +8:12 =18 sq. in. b, K= 5812 = 48 sq. 1in,
c., XK= %--8-12 =48 sq, iIn. d. XK= %'3'4 = 6 sq. ft.
e. K= -12:25 = 150 sq. in. |

%
i
D




f. 5 + cb® =13
25 + cb® = 169
cb? = 144
cb = 12 enm.
1

Then K=3% ° 5 * 12, = 30 sq. cm,

2, The diagram in the book is inaccurate (notice origin of
altitude AD); therefore, it would be wise to have students
ignore the direction to measure the figure in text and have
them draw one of their own. The exercise should lead to the
conclusicy: that the area of the triangle 1s the same
regardless of which altitude and base is selected.

3. By the Pythagorean property of Right Triangles we have:

a® + b2 = c?
10° + b® = 26°
100 + b® = 676

, b?® = 576
\ b =24
| Then K = % * 24 * 10 = 120 sq. in,

4, By the Pythagorean property of Right Triangles we have:

A% + b2 = c2
g- a® + 2 =1 SPE
| a® = h2-g2 Field Theorem

a® =V = Length of a
1
Then K = > ab

K = 5o{ VIE = 7°) SPE (where 4 is the altitude
and Vh® - g2 is the base.

am A
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5. By the Pythagorean property 62 + 82 = c?
36 + 64 = c?

100 = c?

10 =c¢

Let x = length of the altitude to the hypotenuse, then

K=%"x *10 and K=%* 6 * 8
1, . 1, . See exercise 2 above, and
Then 5 * x * 10 =3 ' 6 8 by transitive property.
x = 4,8 or 4 4/5

1 .20-40 = L400O: = Ll.30.u0 = =
6. Kypg = 7 20-40 = b0O: Kype = 330 40 = 600. Kypop =

L4oo + 600 = 1,000.
7. Let x be the length of the altitude to the base
102=143+x9,x=\/B'E,K=%-~/8'lT'8=lk/8'Eor8\/2T
8. a. Let ABC be the triangle and AD an altitude.
(AD)® + 67 = 122, AD = VIOB or &/3
; (regardiless of which ED is selected.)
| b, K=5 12 * 6/3 = 36/3
|

9. Let ABC be the triangle and AD an altitude. Then
2 s ? 2
A.D+-2' = 8

2

AP + 53— = s°
E o
{ g3
i AD? = Sa"l,f
| i = 3
{
o -

53
i
‘|



Then KABC = % ab
K = ]
ABC " 3 gég <
K = g°V3 3

10,11 Areas of Parallelograms and Trapezoldal Regions
{Time estimate ingluding 10.12 = 2 days)

As in section 10.9, students will enjoy trying to
find (on their own) formulas for the areas of parallelograms
and trapezoidal regions. The teacher should ellicit, from
the class, the various steps leading to the derivation of

the formulas.

10.12 Answers to Exercises

'—I

®
-~
]

7-10 = 70 b. K=9°7=63 c¢. K=54.10 =140

n
®
-~
]

L .5(8+40) =45 b, K=5-+6(6+12) =54

C - K=g-° 7(20 + 20) = 105

3. a. Trapezoid, K = % e 5(8+5) = ég
b. Parallelogram., K=8 * 6 = 48
c. Squdre. S=3/2 K= (3v2)? =18

d. Trapezoid. K % . 5 (8+6) = 35

e. Trapezoid. K % 5 (8+4) = 30

58 (M7) = 4

~
I

£f. Trapezold.

T
g
(e
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L. a. K =810 =80. Cost =(80)(.15)= $12.00
b. K = 3-10(10+414) = 120, Cost = 120+.15 = $18.00
c. K=%"65=15 Cost = 15°15 = $2.25
d. b =18, K= 1516 = 240, Cost 240°.15 = $36.00

|
g

Cost = .15/36% (about $2.86)
£. K =% (i02)? = 100 Cost

e. &

.15 x 100 = $15.00

i

5. a. 4:1 b, 9:1 c. 4:9 d. k2:1
6, a. u4:1 b, 9:1 c. b:25 d. ¥2:1

10.13 Areas of other Regions (Independent assignment)

Since this section is interesting and not difficult,
it should be assigned independently. If students have
questions they can be answered when going over homework

exercises.

10.14 Circumference of a Circle and T

{Time estimate including 10.15 = 1 day)

Before doing this section, the teacher may want to
use a discovery approach as outlined below:

Prior to beginning the lesson, the teacher should
have each student bring a tin can and some string to class.
The teacher can begin the lesson by introducing or reviewing
the definitions of circle, radius, diameter and circumference.
Using one end of the tin can as a model of a circle, the
students should find the circumference by pulling the string
tightly around the can and then measuring the length of the

-
e? ~H
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string. After measuring the diameter of the circle as best

he can, the student should compute the ratio % . On the

board, the teacher should have prepared a chart with columns

entitled ¢, 4 and % . After having several pupils 1list their
results on the board it will become clear that % is about

the same in each case. At this pvoint, the teacher may wish
to include some historical reference by mentioning that the
ancicnt Greeks also noticed this constant relationship
between the circumference and diameter of a circle,

The teacher can now return to section 10.14 and
complete the lesson by explaining the procedure outlined in
the text. (It should be pointed out thst paragraph 2 on
P. 219 will have more meaning after this intuitive approach,)

10,15 Answers to Exercises

1. a. 20T b, 16T c., 2r a., T e. &3 T
2, a., 38 in., b, 7T5yd. e¢. 628 m da, 11 cm

3. a. W4 in, b, 22 ft, c, 8800 in.d. 176 m

y, 2:1

5. a. 127 in, b, 50T ft, c. 3 T yd.d., .17 ft,

6. a. 10T in.b. 257 ft.c. 54 T,

T. Side of square = 10/2, perimeter = 40/2, about 56,56,

C = 2.1 +10 = 20 T, about 62,84

62,84 - 56,56 = 628 or 6 in.

Let d = diameter' s length. d° = 3%45°%, d =V34 C = wW3F ,

g



33 12
9, a. 12 b, - Ce = d. k
10, a, 18 b. 4 c. %g- d, 2k

10.16 Areas of Circular Regions
(Time estimate including 10,17 = 1 day)

As in section 10,14, ine teacher may want to give a more
intuitive approach to the area of a circle before considering
the approximation technique of this section., This can be done
by having the students cut a circular region into 6 congruent
regions as in figuie 1., The students should then rearrange the

regions as in figure 2.

¢t |2
db VAVAVA
Figure 1 Figure 2

It will be noticed that figure 2 is a very rough
approximation of a parallelogram, Indeed, if we cut the
circle into a very large number of congruent regions, we
would have a closer approximation to a parallelogram., Thus,
the area of the circle 1s approaching the area of a parallelogram,
If the circumference = ¢, and the radius = r, the base

of the parallelogram = % s and the height = r., Therefore

K=Db*h

arr , r = Tr®

2rr .
5
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10..7 Answers to Exercilses

1. a. 1007 b. 64T T d. %I'Jr e. 3T

2, a. 113,04 b. 200.96 c. 314 d. 15.70

38 1/2 sq. ft. or
3., a. 154 sq.in..b.E38_5 sq. ft. ec. 61600 sq.yd. d. 22 sq.yd.
b, a. T b, T c. Br a4 37w
5. a. 5 b, 8 c. vk a. \F o 2yg

6. &, Tr® = 25T implies r = 5. »C = 10T
b. r = 2’ C = l'"‘n'

c. r=l,C=2‘lT
l 4

da. r=w9.; =T
7. a. omr = 167 implies r = 8, K = 647
b. r =13, K = 16971
c. r=24, K=16m
d. r=#,K=1r(#)3=l;,-r.6-
8. a. (7 52) = 22 7 or 12,57 b. 3 (T4) =87
c. & (m50?) = 1250m d. H (1) =37

9., a. Let the respective radii be 2r and r.
Cy: C,= Urr : 2mr = 2:1
b, K: K= lrr®: mr® = 4l

10. &. 3:1, ‘9'.1 b, 3:2, 9:4
c. 4:3, 16:9 d. 5:1, 25:1
The teacher should generalize at this point that
e, e, = r,:r, and K K, _ 2, 2
1% 1702 e, ey = (1y)3:(x,)

‘360
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= = 3 = 2
11, a. AD = 10V2, KABCD. (10V2) 200,
b, Kijpere = 1007

c., This region has an area which is one-fourth of the
difference between 100T and 200, It is 25T - 50,
d. This region has an area which is three-fourths of

the difference between 100T and 200, It is 757 -~ 150,

10.19 Review Exercises

1, a. The sum of the lengths of the subdivisions of a segment
is equal to the length of the segment,
b, The sum of the areas of the subdivisions of a region
(1f they have areas) is the area of the region,
¢. The sum of the volumes of the subdivisions of a solid
(if they have volumes is the volume of the solid,
2, Let s = length of a side s + s® = 82, s*= 32
s =VJ2. K =3V3Z - 16,

Alternate solution. The area of the triangular region is

one half the area of the square region whose dlagonal

—— 1 2 = L/ — 1.
measures 8 in, quua.re = i 82 = 32, ‘{A = 232 - 16.
3..a, C=16m;K = 64T b. C = 10m, K = 257
c, C = 24r, K= 1447

4, wr® = 100m, r = 10. C = 20w

5. The length of one side is &/2, Area = 72

6. Let ED be the median, Triangles ADB and ADC have same length
bases in DB and DC; and a common altitude from A to BC.

361,
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T Using the result of Exercise 9,

a. K K = 1:1

ADB* *ADC
{ 8. a. Trapezoid K

1 27
5 2(7+2) =<5

b. Parallelogram K = 6:5 = 30,
c. Two triangles with common base in x-axis K = %-5-3 = lg

d. Two triangles, with commonkbase whose endpoints are

(-3, 0) ana (&, 0). K =7 4.7+ 55.7 =%

9. = 3.6.2 = 36 cu. in,
1o0. = 3.5.6 = 90,
é
f Suggested Chapter Test Items
| 1. In a rectangular coordinate system consider the following

set of points with their coordinates:
A(-2,0), B(4,0), ¢(6,3), D(3,3), E(0,3)

4 2. The perimeter of a square is 24, Find the area of its

' reglon,

3. In surveying field ABCD, an east-west line was laid out
through B, as shown. Then perpendicular to this line,
lines from A,D,C intersected it in A* , D! , C'. Find
K

ABCD
BD=18 yds., FC! = 8 yds., CC! = 9 yds.

if AA! = 12 yds., DD! = 20 yds., A'B = 6 yds.,

(See figure next page.)

ERIC -
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Let ABCD be a trapezoid
AB || cD, and XC n BD = (0).

Prove: a, KADC = KBDC

b. Kyop = Xpgg

Find the radius of a clrcle whose circumference measure

is equal to the measure of its reglon.

The area of a semicircular region is 18r. Find the

radius of the related circle,

The diameter of a wheel is 21 inches, How many revolu-

tions does it make covering 860 feet? (Use g%-for T).

In the figure points A,B,C,D are on the circle whose

radius is 10, ABCD is A

a square. (Assume BD

is a diameter), Find:
a. K ‘ |

circle

¢
b. K square .

c. The area of the region bounded by DC and the part
of the circle that is on the opposite side of

DC as A.
009

e,
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Answers for Chapter Test Items

1. a. Kypp = %-3°6 = 9 sqg. units,.
? b. Kypop = 6°3 = 18 sq. units.
% c. KhBDE = % *3 (6+3) = gg-or 13% sq. units.
d. Kgog = % «3*6 = 9 sq. units.

2. Each side has measure 6. X = 6% = 36 sq. units.

i 3'
,
A —]
|
! w ¢
peE . S - b ——
B k! 12 pt & ¢!
Kpsep = Kaaropr + Xpprore + ¥amar ~ Egeor

1(12)(12420) + (8)(20+9) + £(12)(6) - (9)(26)

192 + 116 + 36 - 117
227 sq. yds.
L, a. The altitude from A to IC

the altitude from B to DC

and DC = DC .. Kipe = KBDC .

b. K

ape — K

aop * ¥poc » ¥epc

Ksoc * Kpoc
by (a) X,op + Kpog = ¥poe *+ Kpoc

<~ Kpop = Kpoc

X
it
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Let r be radius. 2mwr = 7rd.
Since r £#0, r = 2.

K = 36#, rr? = 361, r = 6.

circle
The clrcumference is C = 7d
c=%?--21

C =66 This is the distance

covered 1ln one revolution.

The required number of revolution is égg = 10 revolutions,
- 3

a) Kcircle =nr
= 100r

b) 1IAB = 10/7

A KhBCD = 200 sq. units,

= 1 _
c) K:region bounded by BC ~ ¢(1007-200) = 25m-50 sq. units.

reglon side of Do = #(100T-200) = 757-150 sq. units.

acs
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APPENDIX A

Mass Points

\In preceding chapters we have used induction and de-
duction as the pedagogic situation seemed to dictate. Where
deduction was simple we preferred it to induction or exper-
imentation, Ii was one of our purposes in those chapters to
give students many experiences with deductions. In this
chapter we want to take our first step in the direction of
formal deductions. But that step should not be a long one
lest we overwhelm students with the many difficulties inherent
in the process, The important objective 1s to make students
aware of deductive proofs; that they appreciate the place of
postulates of primitive statement in such proofs; that they
learn to be critical in judging validity of proofs; that
they become adept in writing simple proofs about mass points;
and finally that they will come to enjoy the pleasures of
the intellect in this activity.

The topic of mass points 1s related to centers of gravity
and centroids. This might be made clear to students by per-
forming experiments. The first of these experiments could
easily be in connection with the definition of addition of
mass points, as indicated in the see-saw diagram.

In Section 13.2 when Theorem 1 has been learned a second
experiment can be performed to show that a cardboard triangle

can be balanced on a pin at the point where the medians meet,
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that is, at the centroid. If you perform this experiment

be sure to use a stiff cardboard that is homogeneous (as
mortar). In setting the triangle to rest on the point of the
pin, the pin should pierce the cardboard ever so slightly,

to prevent slipping. If the experiment were performed under
ideal conditions there should be no slipping. But no card-
board is ideally homogeneous, nor is the location of the
centroid perfect. So cheat & little but be frank with your
students. In this experiment you are considering the case
of 1A + 1B+ 1C for which the same welght is set at each vertex.
This is equivalent to using a homogeneous cardboard. The

case of 2A + 1B + 1C is more difficult. However, 1t can be

approximated. Connect A, B, B E I
and C with the two light 3
(palsa) strips of wood, or v

C

two metal strips (from a
coat hanger?), as shown at
the right. At A,B,C suspend equal weights.and support the
system at E, such that DE:EA = 3:1., (Shades of mobiles). The
weights at A should be a little more than twice the weight of
the frame on one side of D. If this experiment is carried out,
even though it is not as successful as you might like, it
will help clarify the meaning of mass points and their impor-
tance in the engineering problems of equilibrium.

You will have to face the questicn of what degree of

formality you will require in your students' proofs., Strictly

90w

9.



‘V" o

- 363 -

speaking, the question is not one of degree, since a proof

is either formal or it is not. The question is one of format
or style. In one style, commonly called the two column form,
a reason lis expected for each statement in the proof. This'
is the goal which &ou should set for your students and when
they take their chapter test they should be able to do this.
(See Problem 3 in the Suggested Items for Chapter Test).
However at the outset, when a student 1s giving a proof

orally he should not be interrupted, nor corrected, until he
has completed his effort. It is likely that students will
omit some reasous, particularly the obvious ones. They have
this in common with mathematicians and should not be too
severly criticized for this kind of omission. However, in
order that the nature of deductive proof be clear, it will
eventually be necessary to require all reasons. This require-~
ment, however, should be imposed slowly, and only when students

are ready for it.

A.3 Answers

1. s 5A 5A + 1B 1B
I i B |
b. |‘1A' 1A + 5B 5B
, | 1 L
c. 2C 2¢ + 1D 1D
t [} I |
| 1 . AL

A
P
3

L] P RS P
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d. 1¢C 1C + 2D 2D
—
e. |1E 1E + 1F 1g
1 R
= 2% i
f. 2G 4y + 26 4y
. + H
g !iG . 3G ﬁ . 2 ]
< ]-5- r ey ]_.g x4
h., 2K 2K + 41, 41,
< 33.r >
i. 1K 1K + 2L 2L
. b
3} >
3. 1% K 1% K + 1L 1L
€ 2 — -
k. 3A 34 + 4B 4B
<€ 4 >
1. 2¢ 2¢ + 3D 3D
5 -
m. 5E 5E + 2F oF
< 427 —3
n. 26 2G + 4¥ by
< e =
0. 5K 5K + 4L 4y
< gg. >
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a.

a.
c.

d.

e.

a.
Let
(a)

(c)

(a)
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The center of mass 1s nearer to B.

The center of mass 1s nearer to A.

The center of mass is nearer the point with the

greater mass.

2:3
3+
4 4

v X
+ + 0+

o o ¥
il

3

the weights attached to A and B be a and b

b. 6:1 c. 1L:2
x = 4 =%x=1 AB:BX = 1:3
X =6 =>x=2 AB:BX = 1:2
4§ = 6 =x=2 AB:BX = 1:2
X =3 =x=2 AB:BX = 2:1
x =3 =Dx=1 AB:Bx = 1:2
9 =12 =—=>x=3 AB:Bx = 1:3
12, ¢ =24 b. b=6, ¢
2l, ¢ =36 d. b=9, ¢
b. 6

AC:CB =2:3 =btaand a+b =5

then 3b = 284,
AC:CB = 2:3 =
then 3b = 2a,

AC:CB = 3:4 = b:a and a

then 4b = 3a, solving a

AC:CB = x:y = b:a and a

then ax

Solving a

by
=5 - b go 5x

a=3,b=2
b:a and a + b

a=g%,b=

d. 1:1
A B PN
7
A B X\
7
hp B 2X R
A B X .
B X,
A B X,
= 18
=21

=T

e

5
+ b =10
] = 42
-57)b 4‘7
+b=5
- bx = by
371
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bx + by = Bx and b = 2%

i x+y
_ 5y
f and a X+y
% (e) AC:CB = xty =btaanda +b =2z
% then ax = by
; Solving: & =2 - b SO0 xz - xb = by
| - - x2
i and xz = xb + by and b = XFy
_yz
; and a = %??
8. (a-d) 3D+ 3C 2B +3C 1A + 2B
1A + 5F
o 1 2 3 4 5  §
A C E F D B

(e) Yes
(f) Each triplet resulted in the center E (or G)
and weight 6.

9-
5D —y % y re
3x 2x
%A %B n 5G|
| m L 1
< 5z > 3z —
< W % "

See dlagram above.

Let the distance between A and B be m

Let the distance between B and C be n

() Adding 2A and 3B we obtain point D with weight

371
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5 and the distances AD and DB can be represented

m,

as 3x and 2x and we have that 5x

Adding 5D and 5C we obtain point E with weight 10.

E
The distance between D and E and E and C must be
equal and we can call them y each.
Adding 3B and 5C we obtain point F with weight 8
and the distances BF and FC can be represented
as 5Z and 32, and we have 8Z = n.
Adéing 2A and 8F we obtain point G with weight 10
and the distances AG and GF can be represented by
4y and W.
We have to show that the distance between A and
E is the same as the distance between A and G
(or that the distance between E and C is the same
as the distance between G and C). This means we
have to prove that either 3x + y = 4W

or W+3Z=Yy

Now we have from the dlagram

5k + 82 =m + n (1)
SW+3z=m+n (2)
3x+2y=m+n (3)

From (1) and (3) we get

5x + 8z = 3x + 2y
or 2x + 8z =2y

or X+ Uz =y (4)
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From (1) and (2) we get
5x + 8z = 5W + 3z

or 65x + hz = 5W
or X+ 2zZ=wW (5)

If we combine (4) and (5)

x+ Uz =y
X+z=Ww
we get 3z =y - W

or 3z+ W=y
which proves that EC = GC and therefore that points

E and G are the same.

(f) This shows that
(2A + BC) + 5C = 2A + (3B + 5C).

a. Commutation 2B + 1C = 1C + 2B

b. The Commutation in a and Assonciation.

c. 2B+ 3A+ 1C = (2B + 3A) + 1C (Association)
= (3A + 2B) + 1C Commutation
=3A +2b + 1C Association

aA + bB + ¢C = aA + cC + bB

= bB + aA + cC
= bB + ¢C + aA
= ¢C + aA + DB
= ¢cC + bB + aA

and
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P

T

y, {24 +18 + 2¢

12 T

1. As the proof 1is written it can apply equally well
to any triangle; the;efore to all triangles,
2. Failure to carry out the experiment successfully may
be due to any of the following or combinations.
(a) Line segments are not drawn straight,
(b) Line segments are drawn with broad strokes
and then the center of mass may not be collinear
- with related mass points,
(¢) The ruler was used inaccurately in a measure-
ment,
(d) The computation of the ratio of distances to
- mass points is inaccurate,
3. If medians AD, BE, and CF meet at G, and AD = 15, BE = 12,
and EF = 18, then AG = 10, GD = 5, BG = 8, GE = U,
EG = 12, GF = 6,

4, Using the notation in Exercise 3, if AD = 12, BE = 13,
EF = 14, then AG = 8, GD = 4 , BG = 85, GE = 43, Ca = oF,

GF = 4.
374
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If the hint is accepted the following solution can be
3:4
1:6

3E, 4A + 3E = TG therefore AG:GE

given 2B + 1C

]

4p + 2B = 6D, 1C + 6D = TG therefore CG: GD

Since F is in BG and CA it must be the center of masses
at C and A. Hence 4A + 1C =3F“:a.nd AF:FC = 1:4, Also
2B + 5F = 7G and BG:GF = 5:2,

To solve this problem we

3K

use two sets of weights, E
one to find K1: LB, the L 3
other to find KM:Mb. To IA 0 ‘-/-3

find KL: LB use mass points

1A, 2C, 4B, (We are interested in KB N AE = L). Then
JA+2C=3Kand 3K+ 4B = 7L or KI: LB = 4:3., To find

KM: MB, use mass points 2A, 1B,4C (we are interested in

KB N CD = M), Then 2A + 4C = 6K and 6K + 1B = TM or

KM:MB = 1:6. We may thus think of KB subdivided into

7 segments of the same length, Of these 7, 3 are in

BL, 3 are in IM and one is in MK, Therefore Bl = IM = 3MK,

Using the hint we use mass points 2A, LB, 3C, and 1D.

(2A + 1B) +(2C + 1D) = 3E + 3G = 6H where H is the mid-
point of EG. (1D + 2A) + (1B + 2C) = 3H + 3F = 6K

where K is the midpoint of HF, By Py and Py, 6H = 6K.
Tha.t is EG and HF bisect each other.

Assign weight 3 to Pand 3 to R; 1 to S and 1 to Q. Then

N



o .

T £ R AR ] A PP e T A Y o e £ P T B 4140

A.1l

2.

- 371 -

(3P + 18) + (3R + 1Q) = 4A + U4C = 8E where E is the mid-
point of AC. Also (1S + 3R) + (1Q + 3P) = 4B + 4D = 8F
where F is the midpoint of BD. But 8E = 8F. Therefore
AC and BD bisect each other.

Assign weight 2 to C and 2 to A; 1 to B and 2 to D. Then
(2A + 1B) + (2C + 2D) = 3P + 4R = TE. Also (1B + 2C)

+ (2D +2A) =3Q + 45 =7G. But 2A + 1B + 2C + 2D = TF =7G.

Therefore F = G. Thus F 1s on both Pr and QS and it
follows that F = E, UR + 3P =T7E RE:EP = 3:4
4bs + 3Qq = TE SE:EG = 3:4,

Answers to Exercises

(a) (+12)A
0 6 ‘Ef
48 F 2cC
(4B + 4A) + (2A + 2C) or UB+ 2C + 6A
= 8D + LE = 6F + 6A
= 12H. = 12K.

Therefore H = K = G,
Hence, FG:GA = 1l:1, and DG:GE = 1:2,
(b - e) Exercises should be deleted as they are
confusing and 1irrelevant.
If 4 i1s assigned to B and 5 to ¢, then 4 + 5 should be
assigned to A in order that D be the center of mass of
masses &t B and A, and that E be the center of mass of

messes at C and A. Thus 4B + 44 = 8D and 5C + 54 = 10OE.

376
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The center of all masses is then 8D + 10OE = 18G and
DG:GE = 5: 4, Also 4B + 5C = 9F + 9A =18G.
Therefore G 1s the midpoint of AF.
The segmenf that joins two sides of a triangle at the
midpoints bisects any segment joining any point in the
third side to the opposite vertex.
The segment that Joins the trisection point nearer A,
intersects any segment Joining any point in the third
side to A, in the trisection point nearer A,
a. Assign weights 1 to B, 3 to C and 12 to A.

Then, 1B + 3C = 4D and 3C + 12A = 15E.

Hence, 4D + 12A = 16G and 15E + 1B = 164.

and 16G = xF + 3¢ = x = 13,

Since 1B + 12A = 13F, fo = T -

b, AF BD CE 1 3 L
* FB°DC-ER-I2°T1° I

Assign 2 to B, 3 to C and
5 to A, Then, 2B + 3C +
5A =10A, and 10A =

3C + xF =>»x =7, Thus,

AF _ 2
B~ S

8" 3C
AFBDCE235__ll 40
FE.DU.-E.S.E‘.?" .
If we assign weights to B, and to C then, to A we should
assign 5%3 in order that D and E be centers of masses of

related mass points. We can simplify computation by
2\l

£
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acA

d. Thus, we assign bd to :
B, ad to C, and ac to A. (“"“’J)F E ldcfcul)

This makes F the center of

messes at A and B and acA

+ bdB = (ac + bd)F and BbJ : C@J
AF _ bd AF BD CE_bd a ¢ _
™ =50 ° Then,m.ﬁc.m-—-az.g.d—l.

Using results in Exercise 7 and the equations bdB + adC =
(be + ad)D. Thus, GD:GA = ac : bd + ad.
Or GD:AD = ac : bd + ad + ac

That is % =

ac :
bd + ad + ac .
By similar arguments g% = Thd ¥ Zg + ac

ad
bd + ad + ac

GD , GE , GF _ ac + bd + ad _
Hence, x5 + gr + o7 = pe ¥ ad +ac = 1°

and-gg=

Answers -~ Review Exercises

a.

A oA + 1B B
0 T o) —3
b.
A 1A § 2B B
C. A 42a. + 1C C:L B
13

278
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3 4. A 1AHBPC B
. T
e. 1A (A+2C) 1A+2C+2B B
T
1 1 2 3
f. 2A oA+HIB . B
1 igllg-e
2A+UB+3C
i . X L
: 2.a. x=1 A B 1X
= 2 1 3B X 2 . 3
b, x=1 A B %
] ] 2 ,
e, x =2 AT B X L
d. x=2 3% 53 Y —
3.a.
b. , i
c. 16
YL | A
- 57
b.,a. 1 to Cand 4 to A $F E
b. 1B + 1C = 2D,
hp + 2D = 64G.
Therefore AG:GD = 1:2 'B

BG:GE = 5:1
c. 4a + 1B = 5F,
Therefore AF:FB = 1: 4,
5. If we assign 1 to B, 2 to C
then, ¢ is the center of

masses A, B and C. If we B £

279
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assign first 2 to A and then 1 to B by the first assign-
ment D is the center of masses at A and B, and by the
2 éecond assignment to A, F 1s thé center of masses at
F A and C.
34+1B+2C=(2A ) + (1A + 2C) = 3D + 3F, Also
3A+ 1B+ 2C =3A + (1B + 2C) = 3A + 3E. The center
of masses at A, B, C is DF N AE = G, Thus, DG:DF = 1:1
_ and AG:GE = 1:1, Therefore DF and AE biseét each other,
E 6. If we assign weights 1 to A,

- G C
; 2 t0oB, 4 to Cand 8 to D D

§ then, E, F, G, H are centers g F
| of masses at the endpoints

of the sides in which each

TN g e

. lies. Thus, 1A + 2B = 3E,
| 2B + 4C = 6F, 4¢ + 8D = 126, A

E B

Now, 1A + 2B + 4C + 8D = (1A +.2B) + (4C + 8D) = 3E + 12G

and 8D + 1A = 9H,

or 1A + 2B + UC + 8D = (2B + 4C) + (8D + 1A) = 6F + 9H.
In either case the center of mass of the four masses

at A=B=C=D 1is 15K, where K = HF N GE, Thus, 3E + 12G =
15K end EK:KG = 4:1, Also, 6F + 9H = 15K and FK:KH

= 3:2,

Suggested Items for Chapter Test- Chapter 13

1. Draw AB making it 4 inches long. On this segment locate

the center of the masses for each sum which follows.
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a. 3A + 1B Call the center C,
b. 1A + 3B Call the center D.
c. 1A + 3B + Uc Call it F.

2. For each or the following' equations solve for x and
compute AB: BX. “
a. 3A+ xX =1UB
b. xX+ 4B =17B
3. In A ABC, points D and E
in AB and AC respectively, A
BD: DA = 2:1, and AE:EC = 2:1,
ILet BEN CD = G. Give a reason

for each of the following D E
statements. —" 6

a. 1B+ 2A = 3D. B

b. 2A + 4C = 6E.

c. (1B + 2A) + 4c = 1B +(2A + 4cC).

d. 3D+ 4C = 1B + 6E.

e. 3D+ 4C = 7G and 1B + 6E = 7G.

f. DG:GC = 4:3 and BG:GE = 6:1.
4, a, In A ABC, D is in AB and
E is in AC. BD:DA = 2:1, V

CE:EA =2:1. Let BE N CD

= G, Prove: B&GE = 3:1 B
and CG:GD = 3:1
b. Suppose in A ABC, BD: DA = 3:1 and CE:EA = 3:1.
Compute BG: GE and CG: GD.

ERIC A1
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In quadrilateral ABCD, E, F, G, H are in AB, BC, CD, DA
respectively. E and H are trisection points nearer A
and F and G are trisection points nearer C.

Prove EFGH is a parallelogram.

Answers for Chapter Test Items

Chapter 13
3A + 1B 1A + 3B
A C 3 .D B
a, X =1, AB:BX = 1:3
b. x =3, AB:BX = 3:4

a. Definition of addition of mass points is satisfiled
for 1 + 2 =3 and BD:DA = 2:1.
b. Definition of addition of mass points is satlisfied
for 2 + 4 = 6 and AE:EC = 2:1.
c. Association (P,).
d. Substitution Principle, using (a) and (b) in (e).
e. The center of messes at A, B, C must be both on
BE and CD, hence - 1t must be G. (Also 3 + 4 =
1+6=T7). '
f. Definition of addition of mass points 1is satisfied.
a. We assign weights 1 to B, 1 to C and (2 + 2).to A,
(1) 1B + 2A = 3D Definition of addition of
, mass points.
(2) 1c + 2A = 3E Same as reason (1).
(3) (1B + 2A) + 1C = 1B + (2A + 1C)

P3 .
an9
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_ (4) 3D + 1C = 1B + 3E Subsitution Principle
f (1), (2) 1in (3).

(5) 3D+ 1C = 4g =
1B + 3E The center of masses at
A, B, C is on BE and CD,
that 1is, at G, and
definition of addition.
(6) 1C + 3D = 4g Commutation (P2).
(7) CG:GD = 3:1 and
BG:GE = 3:1 Definition of addition

of mass points.

b. " BG:GE = CG:GD = 4:1

(If BF:DA = CE: DA = n:1, then BG:GE = CG:ED = n+l:1).
5. Assign weights 2 to A, 2 to C, 1 to B, 1 to D.
(1) (2A + 1B) + (2€ + 1D) = (1B + 2C) + (1D + 2A):
B, + Py. |
(2) 2A + 1B = 3E, 2C + 1D = 3G, 1B + 2C = 3F,
1D + 2A = 3H: Definition of addition
of mass points.
(3) 3E + 3G = 3F + 3H: Subsitution Principle.
(%) 3E + 3@ = 6K = 3F + 3H: Statement (1).
(5) EK:KG = 1:1, FK:XKH = 1:1 Definition of addition
of mass points.
(6) EFGH is a parallelogram: If the diagonals of a
quadrilateral bisect

~ each other, it 1s a

parallelogran.
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